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Abstract

Our paper addresses the question ”What determines susceptibility to extremes and
duration of extreme episodes?” Extreme events play a large role in recent socioe-
conomic life, and in economic models, such as those constructed by Barro (2006),
Gabaix (2008), and Wachter (2011). It is therefore important to understand the ex-
tent to which the likelihood of extremes depends on behavior of economic agents. We
model endogeneity in extremes using the concept of frictions due to congestion, as in
the transaction cost and public good literature. We construct a parsimonious model
of an economy with both financial congestion and positive externalities due to net-
work effects. Our model delivers three main results. First, susceptibility to extremes
depends on differences in marginal substitution between net borrowers and lenders.
Second, extreme episodes last until marginal substitution rates converge, or expected
costs rise. Third, a government policy that taxes resource transfers may decrease or
increase the likelihood of extreme events.
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1 Introduction

’Financial markets...can be quite fragile and subject to crises of confidence. Unfor-
tunately, theory gives little guidance on the exact timing or duration of these crises...’
Reinhart and Rogoff (2009b), page xil.

The need to understand extreme events in markets has become compelling. This paper develops a
simple model of endogenous extremes, based on positive and negative externalities. We address two
salient aspects of modern financial markets: dynamics and endogeneity in extremes. By dynamics,
we refer to recurring episodes of ’surprise’ extreme events. By endogeneity, we refer to the effect
of economic agents on the likelihood of extremes.1 The economic costs of extreme events can be
prohibitive, including widespread risk of default, and an impaired trading process because prices
are uninformative. Extreme events also carry large social and psychological costs, such as the risk
of spillovers and increased Knightian uncertainty in an unstable economy.2

Discussions of extreme economic events often model them as generated exogenously.3 But some-
times the likelihood of extreme events is affected by behavior of economic agents. Dynamic, en-
dogenous extremes occur in economics and in nature, including the effect of human activity on the
likelihood of extreme financial events, and on the natural environment.4 In this paper, we build on
existing literature to explore a possible explanation for endogenous extremes, based on interaction
of congestion and network externality effects. Extreme events have externality features, since they
affect many individuals in the national or global economic system, even though often precipitated by
a small number of individuals. It is well known that externalities cause inefficiency of the price sys-
tem.5 Consequently, if extreme events are due to externalities, society may not pay the appropriate
price for the extremes that it generates.

Congestion as a Comprehensive Umbrella. A number of researchers have analyzed financial ex-
tremes and crises, resulting in a variety of different approaches. Rational approaches discuss bubble
expectations, agency costs, multiple equilibria, and fire-sale externalities. The financial frictions
approach emphasizes that liquidity needs at the investor, bank and individual level have aggregate

1Endogenous extremes may arise due to agents’ negligence, bounded rationality, excessive risk taking, or
corruption.

2See Harris (2003), chapter 9; Weitzman (2007); and Caballero and Krishnamurthy (2008). Phelps (2007)
emphasizes that a modern economy features endogenous uncertainty due to unforecastability of innovation.
For further discussion of financial innovation, see Rajan (2010).

3See Friedman and Laibson (1989); and Barro (2006).
4For extremes in economics, see Fisher (1933); Minsky (1982); Grossman (1988); Gabaix et al. (2006);

Allen and Gale (2007); Brunnermeier and Pedersen (2009); and Krishnamurthy (2010). For extremes in na-
ture, see Below et al. (2007); and Stern (2007).

5For textbook expositions of externalities, see Varian (1992), and Mas-Colell et al. (1995). For aggregate
effects of externalities, see Blanchard and Kiyotaki (1987); Harrison (2001); and Gabaix (2010a).
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ramifications.6 Behavioral finance focuses on psychological biases and inefficiencies on the part
of banks and individuals. And econophysics research posits that crashes are an emergent property
of systems with interacting components.7 Several of these research frameworks are presented in
Table 1. These multifarious approaches are non-nested and often develop independently of each
other. It is therefore difficult to test models of extreme events or develop policy aimed at mitigating
extremes, in a manner that is credible to economists from different persuasions.

On an empirical level, the various approaches yield mixed results. Figures 1 to 4 illustrate time
series data on measures of liquidity and investor confidence in the period surrounding large crashes
in the Dow Jones Industrial Average (DJIA). Let us focus on the lower panels, which represent
percentage changes. We see in Figure 1 that the various measures all experienced concurrent spikes
with the 1987 stock market crash. However, in 1998 during the LTCM crisis there is no strong
pattern, as depicted in Figure 2. In Figure 3 we examine the months around Lehman Brothers’
bankruptcy in September 2008. Here the liquidity measures display concurrent spikes, but not the
confidence measure VIX.8 Finally, in Figure 4 all measures spike around the date of the flash crash
in May 2010. However, the magnitude of changes in this figure (as in all other figures) is very much
larger than the DJIA itself, which is somewhat puzzling. In order to explore the empirical relation
a bit more formally, Table 2 presents rank correlations of the liquidity and confidence measures
with the DJIA. The results are not reassuring. Only the confidence measure VIX is significantly
correlated with the DJIA. The liquidity measures are not correlated with the DJIA. While these
results are simple, they underscore that focusing on liquidity (or any single factor) alone may not
suffice to capture the forces behind market crashes.

What can be done to remedy this situation? A possible approach is just to work within one frame-
work (e.g. behavioral or frictions) at a time, and build slowly to more general results. Another
approach, which we find persuasive, is to look for common ground in all of the theories, that is, to
answer the question ”What, if anything, do the various theories of extreme events have in common?”

A Common Theme. From this perspective, at least one common element emerges: congestion
in financial trades. All the above theories are based on the idea that extreme events arise when
’too many’ individuals start doing the same activity. The activity is typically one of the following:
withdrawing money from banks, selling assets that no longer seem valuable, refraining from buying

6For rational bubbles, agency costs and multiple equilibria, see Blanchard (1979), Bernanke and Gertler
(1989), and Benhabib and Farmer (1999), respectively. For fire-sale externalities, see Allen and Gale (2007).
For financial frictions and liquidity, see Brunnermeier and Pedersen (2009), Pedersen (2009), and Allen et al.
(2011).

7In behavioral finance, Odean (1999) and Barber and Odean (2000b) provide evidence of excess trading
due to overconfidence; Benartzi and Thaler (1995) discuss implications of myopia for the equity premium;
herd behavior is examined by Froot et al. (1992); limits to arbitrage are examined by Shleifer and Vishny
(1997). For econophysics research, see Montier (2002) and Sornette (2004).

8VIX is the implied volatility of an at-the-money 30-day option, which reflects investor confidence.
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assets, demanding margins be repaid, holding on to liquid assets so that entrepreneurs cannot borrow
to finance projects. However, if a small enough group of individuals did this action, it would not
matter. There has to be a critical mass for the system to become congested, which then causes
markets to fail or crash.9 This congestion of the system is consistent with actions that arise because
of rational beliefs, behavioral biases or any of the other proposed theories of extremes.

In addition to nesting existing theories, this formulation is important because it delivers an important
insight: it clarifies that extreme events occur not just because agents are acting in a certain way, but
also highlights the importance of system capacity. Just as a large highway can handle more traffic
than a small road, a developed financial market can handle more people selling assets, because
of another, countervailing effect, network externalities: the more people involved in the market,
the greater likelihood of finding counterparties. So market participation brings manifold benefits,
especially in the early or middle stages of economic development–entrepreneurs in need of funding
for worthwhile projects are allowed to borrow and invest in welfare-enhancing innovations. This
latter perspective is not emphasized in the literature of extreme events and crises. Therefore, the
congestion approach has two advantages. First, it is inclusive and respectful to major frameworks
for modeling extreme events. Second, it provides a way of modeling the important tension between
costs and benefits of trading resources in financial markets.

How can we formally model congestion in financial markets? There is a mature public finance
framework on congestion externalities (Baumol and Oates (1988); Cornes and Sandler (1996)), on
which we build in the present paper. Consider an economy with I agents, indexed by i = 1, .., I.

As in the public finance literature we model each agent i as buying two types of good, a private
consumption good yi and a congestible public good qi. In this case the congestible good is the
level of resource transfers (borrowing, lending, investing or trading) by each agent. If the aggregate
amount of the congestible public good is Q ≡

∑
i qi, then the likelihood of congestion in the system

is represented by a function C(Q).

Relation to Existing Approaches. The congestion function has an immediate interpretation in
existing theories. In a rational setting, C(·) represents likelihood of experiencing high agency costs
or ending up in an inefficient equilibrium. In a behavioral setting, C(·) captures the possibility that
overconfidence or herd behavior is strong enough to generate excessive trading. And in the frictions
literature, C(·) measures the likelihood of large, simultaneous liquidity needs in a significant portion
of market participants. In sum, our approach attributes extreme events to any major economic factor
that affects the likelihood of congestion. Therefore, it accounts for endogenous extreme events
regardless of the source–illiquidity, behavioral factors, or rational causes.

9Put differently, as long as the system has enough financial slack to absorb the effect of agents’ actions,
financial markets can continue to function smoothly. It is when the actions cumulate to a large enough degree
(relative to system capacity) that extreme events occur.
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1.1 Congestion and Network Effects in Markets

As discussed above, a prominent characteristic of endogenous extremes is congestion: too many
investors try to perform the same strategy (e.g. selling an unattractive asset) at the same time, which
subsequently prevents anyone from using the market. The importance of congested strategies has
been explicitly modelled in the literature on herding, liquidity, and information complementarities.10

However, the existence of many investors in a market also has a positive network effect, since it
raises the likelihood of finding someone with whom to trade.11 This effect constitutes a social
benefit of using the financial system to transfer risk and resources. We therefore consider both
congestion and network effects that may arise due to the presence of market participants.

A Highway Metaphor. It is useful to think of markets as being like highways. In the case of a phys-
ical highway, its use allows us to work, consume, invest and live in different places. Consequently,
the highway enhances employment of resources for all of society, since it is easier for resources
to go where they are most needed instead of being locally restricted. Nevertheless, over-use of the
highway also leads to congestion, pollution and other external effects. Highway use therefore con-
fers both positive and negative social effects. In the case of markets, they are a virtual highway
whose use enhances welfare when agents participate, but which is sometimes prone to financial
congestion. Use of this virtual highway, therefore, has both positive and negative social effects.
Since congestion externalities have been studied extensively in public economics, we use a simple
public good framework in our economic model.

As the recent financial crisis has demonstrated, markets can become congested with frightening
speed and intensity, which precipitates extreme events. In anticipation of Section 2, we use C to de-
note the likelihood of extreme events or ’tail risk’, which can affect both real and financial sectors.
Previous research has typically modeled this tail risk as an exogenous probability (Barro (2006);
Gabaix (2008); Wachter (2011)). It is evidently valuable for both academics and policymakers to
understand more about determinants of tail risk. One approach (Shin (2009)) is to consider the
likelihood C of extreme events to depend on a reasonable economic variable x, such as excess bor-
rowing: that is, the researcher assumes C = C(x), based on economic intuition. While appealing as
a starting point, this approach runs the risk of allowing the researcher freedom to choose a tractable
but potentially inaccurate characterization of tail risk. As we show below (in Propositions 4 and 5

10For early references, see Fisher (1933) and Keynes (1936), Chapter 12. For herding research, see
Camerer (1989); Banerjee (1992); Bikhchandani et al. (1992); and Froot et al. (1992). For liquidity, see
Pedersen (2007); Brunnermeier and Pedersen (2009); Pedersen (2009); and Wagner (2011). For complemen-
tarities, see Morris and Shin (1998); Cooper (1999); Vives (2008); and Veldkamp (2011).

11For network externalities, see Katz and Shapiro (1985); Shapiro and Varian (1998); and
Easley and Kleinberg (2010).
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and Corollaries 1 and 2), the optimal C(·) that arises from a micro-founded approach has surprising
properties and policy implications, which might not be evident based on a priori reasoning.

Our analysis highlights public good features of financial markets. Negative public good aspects
have been examined by a number of authors.12 As discussed above, market participation also con-
fers positive externalities. We therefore focus on a public good setting with congestion and network
effects, to summarize both negative frictions and positive external effects present in modern finan-
cial markets. This framework captures two relevant aspects of financial markets. First, during times
of crisis, many investors wish to perform the same type of resource transfer, such as selling bad
stocks or diversifying. This results in crowded trades, and what is individually rational becomes
impossible for anyone to do (Pedersen (2009); Duffie (2010)). Second, and perhaps more important
for economic development, in normal times increased use of financial markets is welfare-enhancing,
since it loosens intertemporal budget constraints and permits profitable projects to be undertaken.
It is only when markets have too large demands placed on them (excess trading, complex securi-
ties, etc.) that congestion effects dominate. We use the term financial congestion to denote such
situations. As shown in Table 1, financial congestion springs from a variety of sources, including
liquidity and frictions, consumer sentiment, excess leverage, and uncertainty about complex securi-
ties or new technology. The congestion-network mechanism is always in place, it just has a different
effect depending on the quality of market use. Since the same forces are at work in normal and bad
times they may in principle be manipulated by public policy.

How does this formulation of endogenous extremes help us? It does so in three ways. First, it
allows us to understand the origin of some extremes (the endogenous ones), thereby giving us
insight into which we can plausibly try to avert. Second, it gives banks and regulatory authorities an
additional set of tools from public economics–subsidies, property rights, and so on–that may help
to address extreme events before and during their occurrence. Finally, as noted by Allen and Gale
(2007), modern economics does not always show a specific market failure that central banks and
regulators can correct by their intervention.13 Our formulation provides a perspective on the role of
government, since it identifies a clear market failure, namely the (positive and negative) externalities
from agents’ neglect to consider their impact on the likelihood of extremes.

1.2 Anatomy of Financial Congestion

Financial congestion arises from various sources, including illiquidity, behavioral biases, excess
borrowing and investor sentiment. Focusing on one source alone may not be enough to detect

12See Ibragimov et al. (2009); Acharya et al. (2010a); Acharya et al. (2010c); Shin (2010);
Brunnermeier and Sannikov (2011); and Ibragimov et al. (2011).

13See Bernanke and Gertler (2001) for a related discussion.
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imminent extreme events. In order to illustrate how financial congestion manifests itself and to fix
ideas, we briefly discuss two simple case studies of extreme events, in 1987 and 2007.

Crash of October 1987. The US stock market crash on October 19, 1987 is a very clear example
of what financial markets behave like under congestion. Grossman (1988) demonstrated that excess
use of synthetic securities resulted in excess trading which precipitated such crashes. The crash is
one of the most significant drops ever seen in stock markets. The size of the drop was tremendous,
reflected in all major indices. The DJIA fell 508 points, or 22.6%. The S&P500 also lost more than
20% and the Nasdaq fell around 15%. The effect was widespread and affected all types of stocks.
Standard large companies like IBM lost around 25% of their value. At the same time, technology
stocks like Apple and Intel dropped by around 20% each. Congestion was apparent in the shifting
directions of aggregate buys and sells. In particular the following pattern was observed:14

• 9:30am. DJIA falls 200 points from 2246 to 2046, shortly after the opening bell.

• 10:00 am. DJIA rises to 2100. This pattern continues throughout the day...

• 2:30 pm. DJIA again at approximately 2100.

• 2:45 pm. Selloff begins, removing 300 more points.

• 4:00 pm. DJIA at approximately 1800 points.

The heavy trading volume was too difficult for computers at the NYSE to keep pace with, so it took
considerable time to cumulate all the losses. Eventually the total loss exceeded 500 points, nearly
one-quarter of the DJIA’s value. This and other important market crashes are summarized in Table
3.15

2007 Subprime Scare. In the spring and summer of 2007, the aftershock from the subprime market,
a relatively small part of US financial markets, reached over to touch hedge funds and international
markets. In the US, credit spreads widened ominously, even for safer debt, and the housing market
reached record breaking levels. In Britain the interbank rate reached its highest level in 9 years.
One of the more outstanding examples occurred in July and August of 2007, when hedge funds suf-
fered such severe losses that Goldman Sachs, in a one-of-a-kind intervention, had to infuse US$3
billion into one of its funds, Global Equity Opportunities. This fund lost 30 per cent of its value in
the week between August 3 and August 10, 2007. A major reason cited for the severe hedge fund
losses was that the extremes occurring in markets were ’25 standard deviation’ events (New York

14This account of the 1987 crash summarizes material in Sornette (2004).
15We include only the USA and Hong Kong, because both countries have liberal capital markets, with few

restrictions on investing and transferring capital overseas. Thus the extreme events are not due to government
intervention but to competitive market forces.
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Times, August 13, 2007). The incidents are puzzling because hedge funds did not seem directly
exposed to heavy enough risk to warrant such drops in value. Moreover, most large investors have
risk management systems that are stress tested against extreme market events such as terrorism risk,
banking crises, and interest rate changes. So what sort of event could surprise such respected in-
vestors enough to lose as much as one-third of their value? A potential answer is that our approach
to understanding surprise extreme events is incomplete. This incompleteness may stem from the
fact that both information economics and current risk management are generally silent about endo-
geneity in the likelihood of extremes.

In light of the preceding observations, we analyze extreme events that are dynamic and endogenous.
It should be noted that a type of endogeneity is recognized in certain spheres of risk analysis. In-
formation economics acknowledges that individual agents’ behavior can affect individual outcomes
in settings such as insurance markets. However, this framework is usually restricted to individual
agents or sectors, and typically requires asymmetric information between borrowers and lenders.16

In our model, we illustrate that endogenous risk effects can spill over to other sectors even in the
absence of asymmetric information. A graphical depiction of our approach is in Table 4, which
shows that our view of endogenous probability nests that of moral hazard. The difference is that we
consider broader settings, encompassing spillovers and general information structures.

1.3 Related Literature

Our research relates to existing work on extreme events, coordination externalities, liquidity, and
systemic risk. Regarding extreme events, Mandelbrot (1963) and Fama (1965) show that US stock
returns are not gaussian and have heavy tails. Fama (1965) also documents that stock crashes oc-
cur more frequently than booms. Jansen and de Vries (1991) investigate the distribution of extreme
stock prices in S&P500 stocks, and document that the magnitude of 1987’s crash was somewhat
exceptional, occurring once in 6 to 15 years. Susmel (2001) uses extreme value theory to investigate
univariate tail distributions for international stock returns. He documents that Latin American mar-
kets have significantly heavier left tails than developed economies. Empirically, it has been shown
that investors and assets tend to behave similarly during extreme periods, which also motivates
the congestion approach. In this regard, Longin and Solnik (2001) use a parametric multivariate
approach to derive a general distribution of extreme correlation. The authors examine equity in-
dex data for G5 economies and document that correlations are significant in the left tail of returns.
They also show that correlations increase during market downturns. Hartmann et al. (2003) doc-

16The 2007-2009 financial crisis, however, affected numerous sectors and regions. Moreover, for subprime
mortgages it is difficult to apply standard information economics. To do so, one must argue that poor quality
of the subprime borrowers was ’hidden information’, and that lenders did not understand the potential for
default when supplying loans to borrowers with poor credit history or no collateral.
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ument that Latin American currencies have less extreme dependence than in east Asia, and that
developing markets often have a smaller likelihood of joint extremes than do industrialized nations.
Hartmann et al. (2004) report that stock markets crash together in one out of five to eight crashes,
and that G5 markets are statistically dependent during crises. Poon et al. (2004) model multivariate
tails of stock index returns from G5 markets. They document that in only 13 of 84 cases is there
evidence of asymptotic dependence. They argue that the probability of systemic risk may be over-
estimated in financial literature. Chollete et al. (2009) use general dependence measures to model
portfolios of international stock returns from the G5 and Latin America. They find that an em-
pirical model that allows for asymmetric dependence outperforms standard models, and improves
Value-at-Risk computations. In a comprehensive study of more than 800 years of financial crises,
Reinhart and Rogoff (2009b) conclude that the biggest factors in crises are excessive debt and sud-
den shifts of confidence. During booms, governments, banks or corporations increase borrowing,
and underestimate aggregate risk. The authors emphasize a ”This time is different” mentality, where
market participants downplay the likelihood of extreme events during the boom period preceding
crises. Adrian and Brunnermeier (2010) construct a measure, CoVaR, that summarizes the con-
ditional likelihood of an institution’s experiencing a tail event, given that other institutions are in
distress. They estimate CoVaR for commercial banks, investment banks and hedge funds in the US,
and document statistically significant spillover risk across institutions. Theoretical work on extreme
events also supports the idea of endogenous extremes due to congestion. In this regard, Montier
(2002) discusses the notion that crashes and outliers are endogenous, perhaps due to a preponder-
ance of sellers relative to buyers. Danielsson and Shin (2003) model a scenario where unanticipated
coordination of agents’ behavior leads to an endogenous increase in risk. Liu et al. (2003) demon-
strate in a jump diffusion setting that consideration of rare events discourages individual investors
from holding leveraged positions. Bazerman and Watkins (2004) suggests that certain ’surprise’
events in modern society are predictable, since there may exist sufficient information to know that
these events are imminent. Liu et al. (2005) develop an equilibrium model of asset prices with
rare events. The authors document that aversion to rare events can ameliorate option mispricing.
Gabaix et al. (2006) develop a theory of stock volatility, where the driving force is trading by large
investors, during illiquid markets. Barro (2006) builds a representative agent economy that incorpo-
rates the risk of a rare disaster, modelled as a large drop in the economy’s wealth endowment. When
this model is calibrated to the global economy, it can explain the equity premium and low risk free
rate puzzles, and helps account for stock market volatility. Weitzman (2007) constructs a Bayesian
model of asset returns. He discovers that when agents consider the possibility of extremes, there is
a reversal of all major asset pricing puzzles. Gabaix (2008), Gabaix (2010b), and Wachter (2011)
generalize the Barro framework to account for dynamic probability of extreme events. These latter
models can explain outstanding macroeconomic and finance puzzles as well as the behavior of stock
volatility. Bollerslev and Todorov (2011) use high frequency options data to construct an index of

8



implicit disaster fears among investors. The authors’ method helps to explain patterns in the eq-
uity premium and stock market variance. These papers all underscore the importance of accounting
for extreme events in markets. None of the papers, however, analyzes the endogenous causes of dy-
namic extreme events. This lack of research on endogenous extremes serves as a primary motivation
for our paper.

Regarding coordination externalities, Bikhchandani et al. (1992) and Banerjee (1992) build mod-
els of how agents may coordinate and disregard their private information. Such herd behavior has
effects on the stock market, as examined by Froot et al. (1992). Allen and Gale (1998) construct
a model of banking panics that are related to the business cycle. In this model depositors may
rationally fear low returns on their deposits after observing that leading economic indicators sug-
gest a downturn, and therefore optimally withdraw all funds from banks. The authors show that
bank runs can be efficient, although this result does not hold when runs lower asset returns, nor in
the presence of a stock market. In their Theorem 5 and Corollary 5.1, the authors formalize the
inefficiency of bank runs, which motivates central bank intervention. Aggregate consequences of
externalities have also been modelled by Blanchard and Kiyotaki (1987); Cooper (1999); Harrison
(2001); and Veldkamp and Van Nieuwerburgh (2010). A related literature on bubbles suggests ex-
treme events can be caused by rational indeterminacy, behavioral factors, or new technology, as
discussed by Blanchard (1979), Abreu and Brunnermeier (2003), and Hong et al. (2008), respec-
tively. Allen and Gale (2007) show that bubbles may be precipitated by incentive and limited liabil-
ity issues, which reduce the costs of individual risk taking. In chapter 7 of Allen and Gale (2007)
the authors suggest there is not always a clear market failure for regulators to correct, in the case
of market instability. This latter point motivates our paper to develop a framework that formalizes
market failures inherent in extreme events. We recently became aware of papers by Bianchi (2010),
Bianchi (2011) and Bianchi and Mendoza (2011), who analyze dynamic equilibrium models where
excess borrowing increases financial system fragility. The authors show that these negative external-
ities raise the likelihood of extreme events, and entail significant welfare costs in terms of foregone
consumption. Bianchi (2011) suggests that increased borrowing costs during tranquil periods may
correct the externalities. The above papers do not consider the interplay between negative and pos-
itive externalities from resource transfers, which motivates our paper.

Regarding liquidity, Brunnermeier and Pedersen (2009) demonstrate that liquidity needs at the mar-
ket and funding level can be self-reinforcing. During bad times, such liquidity needs can precipitate
financial crises. Pedersen (2009) describes a situation where major market players all require liq-
uidity, which ends up causing a shutdown in markets. Similar frictions can arise in markets where
capital is deployed in a sluggish manner, and when there is a discrepancy between sophisticated
and naive investors, see Duffie (2010) and Stein (2009). Wagner (2011) demonstrates that when
investors face liquidation risk in multiple assets, they hedge by selecting heterogeneous portfo-
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lios with lower diversification benefits. These papers correctly emphasize the importance of trans-
action costs and liquidity in market outcomes. However, as shown in Tables 1 and 5, extreme
events may occur because of other factors such as excessive government debt and confidence shifts
(Reinhart and Rogoff (2009b), and Keynes (1936)) or over-borrowing in the financial sector (Fisher
(1933)). Moreover, liquidity is notoriously very difficult to measure (Aitken and Comerton-Forde
(2003); Sadka and Koracjczyk (2008); and Goyenko et al. (2009)). Finally, the results in Table 2
show that liquidity does not always convincingly relate to stock market changes during extreme
periods. Thus, a focus on liquidity may ignore other important determinants of endogenous extreme
events. Expanding the focus of the liquidity literature (with respect to extreme events) provides a
further motivation for a general congestion approach.

Regarding systemic risk, Danielsson and Zigrand (2008) construct an equilibrium model where as-
set prices are determined in the presence of systemic risk. The authors argue that while regulation
can reduce the likelihood of systemic risk, it carries costs, such as increased risk premia and volatil-
ity, and the possibility of non-market clearing. Acharya et al. (2010a) describe the causes of the
financial crisis of 2008, arguing that a key catalyst was excessive leverage, which created systemic
tail risk. Acharya et al. (2010b) construct a measure of systemic risk tendency, SES, based on co-
movement of expected shortfall of individual institutions and the aggregate financial system. They
demonstrate ex ante predictive power of SES for various companies during the period 2007-2009.
Acharya et al. (2010c) develop an approach to regulating systemic risk based on SES. They propose
that financial firms be taxed proportionally to their expected loss in the event of a systemic crisis.
On the theoretical side, Embrechts et al. (2002) and Ibragimov and Walden (2007) show that when
portfolio distributions are heavy-tailed with nonlinear dependence, they may result in limited diver-
sification. Shin (2009) demonstrates a wedge between individual risk and systemic risk, based on
the tendency of agents to coordinate during extreme periods. A similar result based on heavy tails is
proven by Ibragimov et al. (2009); and Ibragimov et al. (2011). Thus, there are aggregate economic
ramifications for heavy tailed assets, since individuals’ diversification decisions yield both individ-
ual benefits and aggregate systemic costs. If systemic externality costs are severe, the economy
may require intervention to improve resource allocation. Morris and Shin (2011) develop a model
where adverse selection is amplified across market participants when agents cannot compute maxi-
mal expected losses. None of these papers examines endogeneity of tail risk where both positive and
negative externalities are accounted for. This provides a final important motivation for our paper.

1.4 Contribution of our Paper

Our paper contributes to the literature in several respects. First, unlike previous research, we charac-
terize the endogenous probability of extreme events, using a micro-founded approach. Specifically,
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we derive mathematical expressions to characterize the ’signature’ of dynamic, endogenous ex-
tremes. Second, we account for both positive and negative externalities in financial markets, within
the same model. Third, our model demonstrates the conditions where government intervention is
and is not justified in the face of extreme events. More generally, our framework allows us to discuss
an economic approach to extreme events, using the lens of public economics. The remainder of the
paper is organized in the following manner. Section 2 constructs a simple model of endogeneity of
C, using a congestible public good framework. Section 3 develops this model to characterize dy-
namic, endogenous extremes in a model of resource transfers between agents. Section 4 concludes.

2 Endogenous Extremes: Financial Congestion and Net-
works

A larger network means a smaller world
Delta advertisement

We model endogeneity of extremes as arising due to congestion effects. Extreme probabilities can
be exogenous or endogenous, each with a different policy response.17 Exogenous extremes arrive
from outside the economic system and are truly acts of nature, from the perspective of the domestic
economy. For example, in a crop-based economy, the probability p of extreme changes in crop
value could depend on exogenous swings in weather.18 Since weather is generally unpredictable
beyond a few days, and exogenous to an individual farmer, in this case the probability of extremes
is essentially random. Endogenous extremes, by contrast, are generated and amplified within the
economic system, by agents’ activity and interaction. This activity persists because extremes have
externality-like attributes, and therefore agents ’over-produce’ the amount of extremes in the sys-
tem. Several alternative approaches are presented in Table 5. For example, stock market crashes
and banking panics may stem from excessive risk taking and borrowing of a segment of the econ-
omy (Fisher (1933)), excessive credit creation (Allen and Gale (2000)), and excessive reliance on
computer-based trading (Grossman (1988)).19 Since each agent has an incentive to borrow or risk
too much from the social point of view, competition leads to overproduction of extremes. As dis-
cussed above, this congestion effect balances against a countervailing network effect, since market

17 In practice, there is a spectrum of extremes, with some being a mixture of exogenous and endogenous.
The tools developed herein help us to assess the dominant influence on extremes.

18Other causes of exogenous extremes include foreign wars, natural catastrophes, and uncertainty about
new technology.

19The above authors consider some form of extreme event or crisis, but vary in their emphasis on endo-
geneity. Our paper seems to be the first to use this framework explicitly in a general setting.

11



participation increases social welfare. Hence, the probability of extremes may no longer be random.
We develop the relevant expression for endogenous extremes below.

While exogenous extremes are statistically unrelated to the economic environment, endogenous
extremes (since they are generated by economic agents) should reflect optimizing or equilibrium
behavior of agents. We focus on a canonical form of economic interaction, namely transfer of
resources.20 The heart of the externality is as follows. A key feature of modern financial markets is
that they enhance agents’ ability to transfer resources, which involves either trading commodities
and assets or moving assets across time. This transfer of resources can aid or harm other individuals
not party to the transfer. For example, massive stock sales by some investors can decrease the stock
price, thereby increasing market volatility and diminishing portfolio values of all other investors
who own that stock.21 In similar vein, excessive borrowing by a relatively small set of investors
can increase the likelihood of a systemwide market crash.22 On the positive side, increased market
participation makes it easier for investors and borrowers to find counterparties due to thick market
effects. This is true domestically as well as internationally, since emerging economies with excess
savings can channel their surplus to developed countries and loosen their budget constraints. Hence
the behavior of individual agents inherently affects the wellbeing of others without being reflected
in a price–the definition of an externality. In sum, modern markets confer ability to transfer financial
resources easily, but may bear hidden costs and benefits in the form of externalities.2324 Even though
agents realize their collective behavior affects market thickness and the likelihood of extremes, they
may persist in myopic behavior, since they do not bear all costs and benefits.

2.1 A Model of Financial Congestion

We consider a stylized model where agents use financial markets to transfer idle resources to the
present from the future, or from one resource-plenty agent to a resource-scarce agent. Agents partic-

20Resource transfers include such activities as borrowing funds, and trading assets. Resource transfers are
essential functions of financial markets, see pp. 4-7, Goetzmann and Rouwenhorst (2005).

21See Gabaix et al. (2006).
22Fisher (1933), Minsky (1982), Montier (2002), and Allen and Gale (2007) discuss the fact that large

asset price and output fluctuations for the entire economy may result from various forms of resource transfers
within specific sectors–increased trading, increased desire to liquidate assets, and increased borrowing.

23The externality costs of large resource transfers for an individual depend on the dominant social attitude
towards transfers at the particular time. Thus, there might be zero or even negative perceived costs of trans-
ferring resources during the upswing in asset cycles. There is also evidence of different attitudes by the same
individuals at different stages of their life cycles, see Agarwal et al. (2007). For related ideas, see Minsky
(1982); Kiyotaki and Moore (1997); Baker and Wurgler (2007); and Bansal and Shaliastovich (2010). For
research on the leverage cycle, see Fostel and Geanakoplos (2008).

24We focus on the likelihood of extremes. For work on the structure of specific extreme events, see
Abreu and Brunnermeier (2003); Hong et al. (2008); and Reinhart and Rogoff (2009a). For work discussing
rational individuals’ perception of extreme risk, see Weitzman (2007).
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ipate in the financial market, which has elements of the commons, but also another aspect, individual
contribution: participating in the market generates more thickness and a better chance of matching
and diversification.25 Therefore an agent who participates in resource transfers faces 3 effects. She
enhances her own utility; she contributes to decreased performance of the system whenever she
excessively coordinates with others’ trading strategies (negative congestion externality); and she
helps improve functioning of the system by enlarging trade possibilities for others (positive network
externality).

Hence at the aggregate level resource transfers result in a tension between enhancing thick markets
versus avoiding congestion. We therefore build a simple model of financial congestion, where some
use of financial intermediaries yields positive network effects but excess use results in reduction or
removal of ability to trade. To formalize our approach we build on the public economics literature
on congestion (Baumol and Oates (1988); Cornes and Sandler (1996); Myles (1995)) and use two
distribution functions: the congestion function C(·), which measures the distribution of congested
trades in financial markets, and the network function N(·), which summarizes enhanced trading
opportunities due to thicker markets.

The Environment. The economy E is defined as a collection of goods (q, y), prices π and pref-
erences U , that is, E = (q, y, π;U(·)). Specifically, U(·) is a utility function, y is a consumption
good, q represents resource transfers; and π represents average prices. The environment comprises
I ≥ 2 identical individuals of whom we consider one representative individual. Each agent i buys
a consumption good yi and also trades qi units of her resources. The total amount of trading is∑I

i=1 q
i ≡ Q, which affects the likelihood of congestion or friction in financial markets. Thus Q is

a public good that negatively affects utility, since it raises the likelihood of socially harmful extreme
events. Each agent has an exogenous income W i, and takes as given the prices of y and q, namely
πy and πQ. We normalize the price of y to πy = 1.

Assumptions and Definitions. Agent’s preferences are represented by a neoclassical utility func-
tion U as in Allen and Gale (2007). U(·) is therefore quasi-concave, increasing and continu-
ously differentiable.26 U depends on goods, congestion C and network effects N , that is, U =

U(y, q, C(·), N(·)). As in the public economics literature (Baumol and Oates (1988); Cornes and Sandler
(1996)) congestion depends on aggregate usage Q, that is, C = C(Q). Thus, the likelihood of con-
gested trades depends on the level of resource transfers in the economy. Throughout, we restrict
attention to interior optima for illustrative purposes. Derivatives are denoted with a subscript. For
example, Uy ≡ ∂U

∂y , Uq ≡ ∂U
∂q , and Uc ≡ ∂U

∂c . Similarly, CQ ≡ ∂C
∂Q , and NQ ≡ ∂N

∂Q .

25For work on thin markets, see Rostek and Weretka (2010) and Rostek and Weretka (2011).
26For definitions and implications of quasi-concavity, see Mas-Colell et al. (1995).
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Assumption 1. The derivatives of the congestion and network functions satisfy NQ ≥ 0 and CQ ≥ 0.
Thus, an increase in total resource transfers always (weakly) increases both the network effect and
the likelihood of congestion.

Assumption 2. The derivatives of the utility function satisfy UN ≥ 0 and Uc ≤ 0. Thus, an increase
in market thickness weakly increases utility, while an increase in congestion weakly decreases util-
ity.

Assumption 3. For congestion to occur, at least two agents must use the markets. Thus, in a two-
person economy, C(0, ·) = C(·, 0) = 0. This rules out cases where an autocrat can shut down
markets unilaterally.

Definition 1: An extreme event is a large drop in average prices π.

Definition 2: An exogenous extreme event occurs when a large fall in asset prices is unrelated to
any economic variable v ∈ E.

Definition 3: An endogenous extreme event occurs when a large fall in asset prices is related to
some economic variable v ∈ E.

Since endogenous extremes arise because of congestion in our model, the likelihood of an endoge-
nous extreme event is given by the derivative of the distribution function, that is, by CQ. Below, we
consider 2 cases in turn: markets exhibit only congestion effects, and markets have both congestion
and positive network effects.

2.1.1 Financial Markets Exhibit Only Congestion Effects

In this setting, there is no aggregate benefit from market participation, there is only individual benefit
to the agent. Thus, the market is just a facility like a recreation area that yields pleasure to each
individual that uses it, but accords no systematic benefit for society as a whole. Moreover, there are
negative external effects–sometimes the market gets congested, which causes extreme events that
negatively affect all society. The representative individual has a quasi-concave utility function

U i(·) = U i(yi, qi, C(Q)), (1)
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where C(Q) is a congestion function with the properties CQ ≥ 0, and Uc ≤ 0. That is, the likelihood
of congestion increases as resource transfers increase; and the agent’s utility falls if congestion
becomes more prevalent.27

Private Optimum: The representative individual chooses her level of resource transfers, in a Nash-
Cournot setting, where she takes Q̂ =

∑
j ̸=i q

j as exogenously given. Her problem is

max
(yi,qi)

U(yi, qi, C(Q̂+ qi))

subject to
yi + πQq

i = W i.

The first order necessary conditions for interior optima imply U i
q+U i

cCQ

Uy
= πQ, which can be ex-

pressed in terms of the likelihood of congestion:

CQ =
πQ−

U i
q

U i
y

U i
c

U i
y

. (2)

According to (2), the likelihood of congestion is proportional to the difference in the marginal cost
and benefit of an additional resource transfer. We now turn to the social optimum.

Social Optimum: If we consider a simple equal weighting of utilities, the corresponding social
problem is

max
(yi,qi)

∑
i

U i(yi, qi, C(Q))

subject to ∑
i

yi + πQ
∑
i

qi =
∑
i

W i,

The first-order necessary conditions are U i
y − λ = 0 and U i

q +
(∑

j U
j
C

)
CQ − λπQ = 0. These

combine to yield U i
q

U i
y
= πQ −

∑
j

(
Uj
C

U i
y

)
C̃Q, or

U i
q + U i

CC̃Q

U i
y

= πQ −
∑
j ̸=i

(
U j
c

U i
y

)
C̃Q.

27This formulation of congestion is standard in public economics, see Baumol and Oates (1988); and
Cornes and Sandler (1996). q can be, for instance, the amount of public good related to trading in credit
transfers by financial market participants.
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The above expression is intuitive: at the optimum agent i’s marginal valuation of additional resource
transfers q equals the marginal private cost πQ plus the social cost associated with increasing ex-
treme congestion in the financial system. To focus on extremes, we rewrite the above expression as∑

j

(
Uj
C

U i
y

)
C̃Q = πQ − U i

q

U i
y

, which implies

C̃Q =
πQ − U i

q

U i
y∑

j

(
Uj
C

U i
y

) . (3)

Equation (3) says that at the social optimum, the marginal likelihood of congestion C̃Q equals the
marginal private cost minus the marginal benefit agent i places on additional (congestion-causing)
resource transfers.

When is the likelihood of congestion larger? By comparing (2) and (3), we see that the private
solution CQ is larger. This is true because the denominator does not account for all economy-
wide marginal rates of transformation. Intuitively, when she does not have to account for her extra
congestion effects, each agent will over-use the financial system.28 Thus for a given level of re-
sources, the likelihood of congestion is larger when agents act competitively and do not consider
congestion externalities. This result provides an asset market counterpart to the banking result of
Allen and Gale (1998) (Corollary 5.1). We summarize it in the following Proposition.

Proposition 1. In an economy with congestion effects due to resource transfers, the likelihood of
congestion in a competitive market is larger than in the social optimum.

Proof: By inspection of (2) and (3). �

2.1.2 Financial Markets Exhibit Congestion and Network Effects

We now consider a more realistic environment, which is the focus of our analysis in the paper. The
environment is one in which individual and social welfare are affected by both congestion and posi-
tive externalities. The positive externalities reflect ease of finding counterparties and diversification
when markets are thicker, and also reflect the overall quality of the financial network N available
(see Shapiro and Varian (1998); Easley and Kleinberg (2010)). The overall quality of markets de-
pends on total trading activity Q, which is contributed to by each new participant that comes to the
marketplace to conduct resource transfers. In order to capture this network effect we include a net-
work function N(Q). The representative utility function may be written as U i(yi, qi, C(Q), N(Q)),

28Overuse involves excess trading, or any economic activity that generates excessively high informational
demands on the system.
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where the derivatives satisfy NQ ≥ 0, and UN ≥ 0. Thus, an increase in resource transfers increases
network quality, and utility increases with network quality. We can now expand the above discus-
sion of negative externalities to consider optimal social benefits that come from thicker markets,
enhanced liquidity and trading opportunities, due to investors’ participation in the financial system.

Private Optimum: The representative individual takes Q̂ =
∑

j ̸=i q
j as exogenously given, so her

problem is
max
(yi,qi)

U(yi, qi, C(Q̂+ qi), N(Q̂+ qi))

subject to
yi + πQq

i = W i.

The first order conditions are U i
y − λ = 0 and U i

q + U i
CCQ + U i

NNQ − λπQ = 0, which combine
to give

πp
Q =

U i
q + U i

NNQ

U i
y

+
U i
C

U i
y

Cp
Q, (4)

or

Cp
Q =

πp
Q − U i

q+U i
NNQ

U i
y

U i
C

U i
y

, (5)

where the superscript p denotes a private solution. Cp
Q measures the likelihood of congestion-caused

extreme events in a competitive economy, and is an important quantity which we shall use in Section
3 below.

Social Optimum: The corresponding social optimum solves the following program:

max
(yi,qi)

∑
i

U i(yi, qi, C(Q), N(Q))

subject to ∑
i

yi + πQ
∑
i

qi =
∑
i

W i.

The necessary first order conditions are U i
y −λ = 0 and U i

q +
∑

j U
j
CCQ+

∑
j U

j
NNQ−λπQ = 0,

which together yield

πs
Q =

U i
q +

∑
j U

j
NNQ

U i
y

+
∑
j

(
U j
C

U i
y

)
Cs
Q, (6)

or

Cs
Q =

πs
Q − U i

q+
∑

j U
j
NNQ

U i
y∑

j

(
Uj
C

U i
y

) , (7)
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where the superscript s denotes the social optimum. Cs
Q is the likelihood of congestion-caused

extreme events in an economy where social costs are considered. Importantly for both the social and
competitive optimum, the likelihood of extremes is negatively related to network effects, because
both congestion and networks depend (in opposite ways) on aggregate resource transfers Q. We
summarize this in the following Proposition.

Proposition 2. Consider an economy with external congestion and network effects due to resource
transfers. At an interior optimum, the (private and social) likelihood of extreme events increases as
the marginal network effect falls. That is, CQ is inversely and monotonically related to the network
effect NQ.

Proof: By inspection of (5) and (7). �

While the result in Proposition 2 follows directly from the calculus of networks and congestion,
it is instructive because it explicitly relates the countervailing forces that have to be reckoned with
when designing public policies aimed at increasing market thickness and liquidity, in order to reduce
exposure to extremes. Focusing on the competitive equilibrium (5), we see that the relation between
congestion Cp

q and networks NQ is nonlinear in general. Consequently, the probability of extremes
depends on the level of financial market participation in a monotone, but potentially nonlinear way.

When do private markets yield inefficiently high levels of endogenous extreme events? Comparison
of conditions (5) and (7) reveals that the private likelihood of congestion Cp

Q exceeds the social
optimum Cs

Q if the following inequality holds:

πp
Q

U i
y

U i
c

−
U i
q + U i

NNQ

U i
c

> πs
Q

∑
j

(
U i
y

U j
c

)
−

U i
q +

∑
j U

j
NNQ∑

j U
j
c

.

Given the assumption of I identical individuals, superscripts can be removed to yield U i = U j = U,

and
∑

j U
j
C = IUC . Therefore the above inequality can be rewritten as

πp
QUy − Uq − UNNQ

UC
>

πs
QUy − Uq − IUNNQ

IUC
,

or
Iπp

QUy − IUq − IUNNQ − πs
QUy + Uq + IUNNQ

IUC
> 0,

which simplifies to
Iπp

Q − πs
Q

I − 1
>

Uq

Uy
.
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For a large economy, this converges to the following inequality:

πp
Q >

Uq

Uy
. (8)

This expression depends on the relative size of network and congestion effects. To see this, return
to equation (4), which in the identical individual case is

πp
Q =

Uq

Uy
+

UNNQ + UCCQ

Uy
. (9)

The second term on the right of (9) determines whether the private or social optimum dominates.
Since UN ≥ 0 and UC ≤ 0 by Assumption 2, this term can be either positive or negative, depending
on the relative size of congestion and network effects. If network effects UNNQ are relatively large,
the likelihood of congestion-caused extreme events is higher in the private equilibrium. Intuitively,
when benefits from network externalities are large, it may be optimal for individuals to put up with
a higher likelihood of extremes. This leads us to the following Proposition.

Proposition 3. Consider a large economy E with both external congestion and network effects from
resource transfers. In this economy, the equilibrium likelihood of extreme events Cp

Q is smaller than
that of the social optimum Cs

Q if and only if UNNQ < |UCCQ|, that is, if the congestion effects
dominate marginal network benefits.

Proof. We have to show that Cp
Q < Cs

Q if and only if UNNQ < |UCCQ|. By comparing equilibrium
and socially optimum congestion as above, we obtain the necessary and sufficient condition for
Cp
Q > Cs

Q as (8). Reversing the sign, we have that Cp
Q < Cs

Q if πp
Q <

Uq

Uy
. By inspection of (9),

this latter inequality obtains under the maintained assumptions if UNNQ < |UCCQ|, as was to be
shown. �

Importantly, the likelihood of extreme events is dynamic to the extent that network effects UNNQ

change over time. This raises the question of when network effects are likely to be largest. Intu-
itively, the marginal benefit from participation is larger when only few agents participate in markets.
Perhaps more subtly, network effects can also arise in a market with high demand for borrowing,
when financial innovation or education attracts additional individuals with excess savings.

Can public policy err in that targeting extreme events? The following Corollary demonstrates how
a policy response in the face of endogenous extreme events can have unintended, adverse conse-
quences.

Corollary 1: Consider a large economy E with both congestion and network effects from resource
transfers. In this economy, if the congestion effect UCCQ dominates the network effect UNNQ, a
tax on financial congestion will raise the likelihood of extreme events and tail risk.
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Proof. Suppose that |UCCQ| > UNNQ, and consider that a policymaker imposes the optimal
tax t. We have to show that imposing t will raise the competitive likelihood of extremes Cp

Q to a
new level CNew

Q > Cp
Q. By definition, the optimal tax t is such that when agents pay the price

π̂ = πp
Q + t, their maximizing behavior leads to the socially optimum congestion level.29 Thus, the

new likelihood of extremes is CNew
Q = Cs

Q. But by Proposition 3 above, if UNNQ > UCCQ, then
Cs
Q > Cp

Q. Therefore CNew
Q > Cp

Q, as was to be shown. �

Corollary 1 tells us that if the goal of public policy is to reduce endogenous extreme events, it must
account for network effects or run the risk of precipitating further extreme events.30 It can be seen as
an extension of the results of Allen and Gale (1998) (Theorem 5 and Corollary 5.1) to asset markets
that exhibit both negative congestion effects and positive network externalities.

3 Endogenous Extremes and Resource Transfers

In the previous section we constructed a basic model of endogenous extremes due to congestion. We
now develop the model to explore the timing and duration of extremes, in light of questions raised
by Reinhart and Rogoff (2009a). We consider an economy populated by 2 types of representative
agents with differentiated resource or wealth endowments. These agents use the financial system to
transfer resources between themselves for 1 period. Suppose that types 1 and 2 transfer resources to
each other in the amounts q1 and q2, recognizing that these transfers might raise the likelihood Cp

Q

of extreme events. A key idea is that agents know the congestion function, of the form derived in
Section 2. They are not subject to irrational behavior or asymmetric information about the likelihood
of extremes. Below, we show that, under fairly moderate assumptions, the likelihood of extremes in
this economy may overshoot or undershoot the socially efficient level.

As modelled in Section 2 above, the more agents engage in resource transfers such as excessive bor-
rowing or investing in risky securities, the more likely it is that markets experience congestion and
asset prices reach extreme levels, affecting the entire system. Thus, let C(q1, q2) be the distribution
function of such extreme events, with the likelihood of extremes given by Ci

Q ≡ ∂C(q1,q2)
∂qi

≥ 0,
i = 1, 2. Let k1 and k2 be the costs of extreme events, net of interest, for Agents 1 and 2, respec-
tively.31 With probability 1− CQ(·) there is no extreme event and each agent receives 0 net.

29For a derivation of the optimal tax in a congestion setting, see Cornes and Sandler (1996), pp. 275-276.
30 Similar results are found in public economics, where the public good is over-supplied under private

provision. See Buchanan and Kafoglis (1963), and Diamond and Mirrlees (1973).
31Financial costs of extremes include risk of default and an impaired financial system. Social and psycho-

logical costs include increased Knightian uncertainty in an unstable economy.
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For concreteness, the two main agents each conduct only one type of resource transfer–only selling
and buying. We call these agents sellers and buyers, respectively. The transfer of resources may
affect other agents in the economy, including other buyers, sellers, banks and investors, domestically
and internationally. We denote these other agents by O, for other. In the following analysis we use
subscripts 0, 1 and 2 to index variables pertaining to other, sellers and buyers, respectively.

We now develop this setting to incorporate time. Sellers and buyers are both in the market for
transferring resources. Effective supply of resources by sellers is q1 and demand for resources by
buyers is q2. The framework is a two-period economy, where the first period is t and the second
period is t + 1, in order to distinguish subscripts that refer to time from those that refer to agents.
In the first period sellers and buyers interact and transfer resources. In the second period, sellers
are repaid with interest q1,t · (1 + i), and buyers repay the resources, q2,t · (1 + i), where i is the
prevailing interest rate. For simplicity, assume that agents receive all their wealth and make all their
repayments in the second period.32 Thus, the seller’s and buyer’s wealth levels in the first period
completely derive from resource transfers: w1,t = −q1,t, and w2,t = q2,t, respectively. In the second
period t+ 1, the buyer and seller receive exogenous wealth endowments w̄1 and w̄2, respectively.

We focus on representative sellers and buyers with neoclassical utility functions u1 and u2, re-
spectively, which depend on wealth: ui = ui(wi), where u′i(wi) > 0, i = 1, 2. To control for
contemporaneous costs, we consider utility to be net of current costs. Each agent knows there is a
possibility of systemwide extreme events, captured by the probability CQ, whose functional form
is common knowledge. There is no asymmetric information regarding the likelihood of extremes.33

As described in Section 2, the probability of future extreme events increases with the average level
of current resource transfers, Ct+1(·) = Ct+1(q1,t, q2,t), where Ci

Q,t+1 ≡ ∂Ct+1(·)
∂qi,t

≥ 0, i = 1, 2.34

If an extreme event occurs in the future, agent i incurs a positive cost ki,t+1, i = 0, 1, 2. Our results
depend on properties of k, so we analyze two cases, finite k and potentially infinite k.

32This timing allows us to model the use of financial markets to transfer wealth over time.
33Similar assumptions occur in many other economic contexts, such as price taking, competitive agents

in Arrow and Debreu (1954) and Debreu (1959), even though the demand of each agent will affect price to
some extent. Such myopic behavior can be found in other rational settings: investors with log utility decide
their portfolios without reference to future investment opportunities, see Ingersoll (1987), chapter 11.

34 This summarizes the intuition that excessive resource transfers are destabilizing, without emphasizing
the particular channel of destabilization. Channels through which resource transfers lead to increased likeli-
hood of extremes are explored by a number of authors, including Fisher (1933), Allen and Gale (2000), and
Krishnamurthy (2010).
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3.1 Large but Finite Costs k of Extreme Events

Suppose 0 < k1,t+1 < ∞ and consider the seller’s problem. Given an interest rate i, at period t

the seller decides how much resources to transfer this period by maximizing utility subject to the
following wealth constraint, which accounts for the possibility of costly extreme events:

w1,t+1 ≥ w̄1 + Ct+1(q1,t, q2,t)[q1,t · (1 + i)− k1,t+1] + [1− Ct+1(q1,t, q2,t)][q1,t · (1 + i)].

Given locally nonsatiated preferences, this constraint holds as an equality, which simplifies to
w1,t+1 = w̄1 + q1,t · (1 + i) − Ct+1(q1,t, q2,t) · k1,t+1. Using β to denote the discount factor,
the seller’s problem is:

maxq1 u1(w1,t) + βu1(w1,t+1), s.t.

w1,t = −q1,t

w1,t+1 = w̄1 + q1,t · (1 + i)− Ct+1(q1,t, q2,t) · k1,t+1.

After substituting the constraints into the utility arguments, first order conditions for an interior
solution are −u′1(w1,t)+βu′1(w1,t+1)[(1+ i)− ∂Ct+1(q1,t,q2,t)

∂q1,t
·k1,t+1] = 0, which can be rewritten

as
C1
Q,t+1 ≡

∂Ct+1(q1,t, q2,t)

∂q1,t
= − u′1(w1,t)

βu′1(w1,t+1) · k1,t+1
+

1 + i

k1,t+1
. (10)

Equation (10) says that optimally the probability of extremes is related to the marginal rate of
substitution for transferring resources between periods t and t + 1, discounted by expected costs.
Since the first term of the right hand side of (10) depends on q1,t via the budget constraint, it follows
that extreme probabilities respond to variables affecting the level of resource transfers.

Similarly, the buyer’s problem is

maxq2 u2(w2,t) + βu2(w2,t+1), s.t.

w2,t = q2,t

w2,t+1 = w̄2 − q2,t · (1 + i)− Ct+1(q1,t, q2,t) · k2,t+1,

which yields first order conditions that can be rewritten as

C2
Q,t+1 ≡

∂Ct+1(q1,t, q2,t)

∂q2,t
=

u′2(w2,t)

βu′2(w2,t+1) · k2,t+1
− 1 + i

k2,t+1
. (11)

As in equation (10), the above expression implies that the future probability of extremes is poten-
tially dynamic, and depends on the current level of resource transfers.
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Equilibrium: In equilibrium, the effective demand and effective supply of resource transfers will
be equal, q1 = q2 ≡ q. For illustrative purposes, consider a symmetric equilibrium where buyers
and sellers have identical utility functions and costs, u1 = u2 = u, and k1 = k2 = k. Now
equate optimality conditions for the seller and buyer in (10) and (11): − u′(w1,t)

βu′(w1,t+1)·kt+1
+ 1+i

kt+1
=

u′(w2,t)
βu′(w2,t+1)·kt+1

− 1+i
kt+1

. This implies

1 + i =
1

2β

[
u′(w1,t)

u′(w1,t+1)
+

u′(w2,t)

u′(w2,t+1)

]
.

Substituting this expression in equation (11) and simplifying, we obtain that in equilibrium, extreme
probabilities CQ,t+1 satisfy

CQ,t+1 ≡
∂Ct+1

∂qt
=

1

2βkt+1

[
u′(w2,t)

u′(w2,t+1)
− u′(w1,t)

u′(w1,t+1)

]
(12)

Equation (12) constitutes the signature of endogenous extremes. Somewhat surprisingly, the respon-
siveness of extreme probability to resource transfers is proportional to the differential in marginal
rates of substitution for agents in the corresponding market. When there is a big difference in
marginal rates of substitutions between borrowers and lenders, the susceptibility to extreme events
is higher. As before, the extreme probability is dynamic: it depends directly on the expected costs
of extremes, and indirectly (with indeterminate sign) on the equilibrium level of resource transfers
via the budget constraint. If extremes were truly exogenous, there would be no statistical relation
between extreme probability and q, and ∂C(qt+1)

∂qt
= 0. Thus, the distance of the right side of (12)

from zero gives a sense of the error from assuming extremes are exogenous, when they are in reality
endogenous.

Importantly, there are 2 main countervailing effects. First is the kt+1 cost term in the denominator:
the larger it is, the less likelihood of congestion since it negatively affects utility. Second is the dif-
ference in marginal rates of substitution u′(w2,t)

u′(w2,t+1)
− u′(w1,t)

u′(w1,t+1)
: the larger this is, the more attractive

for individuals to transfer. In addition, there is a latent effect of resource transfers qt, which operate
through the budget constraint.

We summarize the results from (12) in the following Proposition.

Proposition 4. In an economy with symmetric preferences and nonzero social costs of extremes,
the likelihood of extremes CQ is potentially dynamic. CQ depends indeterminately on equilibrium
resource transfers; decreases with expected costs of extreme events kt+1; and increases with the
divergence between agents’ marginal rates of substitution.

Proof: By examination of (12). �
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An immediate result of the above proposition is that the likelihood of extremes becomes arbitrarily
low when marginal rates of substitution are equated. This gives us information about timing and
expected duration of extreme events, as summarized in the following Corollary.

Corollary 2. In an economy with symmetric preferences and nonzero social costs of extremes,
extreme episodes will persist until the marginal rates of substitution are equated, or if expected
costs of extremes rise high enough .

Proof: By examination of (12). �

Social Optimum. We now consider optimality issues. To see that the likelihood of extremes is
inefficient in competitive equilibrium, suppose the seller considers the effect of her selling on other
agents O, and therefore internalizes costs k0,t+1. Her problem is similar to that preceding equation
(10), except that the second budget constraint becomes

w1,t+1 = w̄1 + q1,t · (1 + i)− Ct+1(q1,t, q2,t) · (k0,t+1 + k1,t+1).

Solving the first order conditions and rewriting as before, we obtain the counterpart of equation (10)
for a socially optimal level of extremes:

∂Ct+1(q1,t, q2,t)

∂q1,t
= − u′1(w1,t)

βu′1(w1,t+1) · (k0,t+1 + k1,t+1)
+

1 + i

k0,t+1 + k1,t+1
. (13)

The quantities in equations (10) and (13) will differ in general. Thus, when the resource seller takes
into account the future costs of other agents, optimizing behavior delivers a different likelihood of
extremes. It is in this sense that competitive markets may lead to endogenous, inefficient proba-
bility of crashes.35 We are not just saying there is a link between excessive resource transfers and
extremes. Instead, we are showing that even without asymmetric information or irrationality, ex-
treme events may arise as an equilibrium phenomenon, to the extent that ∂Ct+1(q1,t,q2,t)

∂q1,t
̸= 0. This

phenomenon occurs due to the failure of both resource sellers and buyers to internalize an important
externality, the expected costs from congestion, which affect the probability of systemwide, future
financial extremes.

Importantly, as in Section 2, we cannot determine a priori whether the likelihood of extremes is
larger in the competitive equilibrium or the social optimum. We summarize our results from equa-
tions (10), and (13) in the following Proposition:

35Optimality will not necessarily entail complete elimination of extreme events. Rather, the extreme prob-
ability is adjusted to the point where marginal benefit to sellers of an additional unit of the externality-
generating activity, u′

1(q), equals marginal cost to other agents, −u′
0(q).
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Proposition 5. In an economy with symmetric preferences and nonzero social costs of extremes, the
equilibrium level of extreme probability is in general not socially optimal. Moreover, the likelihood
of extremes may be smaller or larger in competitive markets.

Proof: By comparison of (10) and (13). �

3.2 Potentially Infinite Costs k of Extreme Events

Recent financial events have potentially catastrophic consequences that are difficult to quantify ex
ante. These events include the costs of the Japan earthquake and nuclear meltdown in January 2011,
the US debt default scare in early August 2011, the Greece debt crises of April 2010 and June 2011,
and the financial crisis inception in September 2008. In order to capture such events, we consider
the possibility of infinite expected costs of extremes for each type of agent. Specifically, suppose
k1,t+1 = ∞ and consider the seller’s problem as in section 3.1 above. Once again, her maximization
program is

maxq1 u1(w1,t) + βu1(w1,t+1), s.t.

w1,t = −q1,t

w1,t+1 = w̄1 + q1,t · (1 + i)− Ct+1(q1,t, q2,t) · k1,t+1.

However, now the agent’s program involves optimizing over a quantity of infinite magnitude, which
often leads to corner solutions. To see this, substitute the constraints into the maximand, which
becomes

u1(−q1,t) + βu1 (w̄1 + q1,t · (1 + i)− Ct+1(q1,t, q2,t) · k1,t+1) (14)

Since the second term involves minus infinity, the only solution for a risk-averse individual is to set
q1,t = 0, so that Ct+1(·) is as close to zero as possible. A similar logic applies to the seller. We
remove the subscript on k for simplicity and summarize this result in the following Proposition.

Proposition 6. Consider an economy where agents transfer resources, and in which there is com-
mon knowledge about the likelihood of extreme events, captured by the function C(Q). If the ex-
pected cost of extreme events k is infinite, then risk-averse agents will not transfer resources.

Proof. The agent’s problem involves choosing transfers q1 to maximize (14). If k = ∞ then
the second term becomes −∞. This implies unbounded negative utility for a risk-averter, un-
less Ct+1(·) = 0. The agent will therefore set q1 = 0, which according to Assumption 3 yields
Ct+1(·) = 0. q1 = 0 corresponds to non-transferral of resources. �
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According to Proposition 6, if agents face extreme events with arbitrarily large consequences, the
only way they will trade is if they are risk neutral or risk-loving.36

3.3 Summary and Implications

The preceding results have implications for regulatory policy and risk management. Proposition
4 cautions risk managers against the assumption that exposure to extreme events is constant over
time. Further, Proposition 4 suggests possible warning signals for regulators and risk managers–low
expected costs and a large gap between agents’ desires to transfer resources over time.37 Proposi-
tion 5 and Corollary 1 suggest, in principle, a role for regulators and central banks to intervene
and prevent excessive financial extremes. However, these latter results also caution regulators that
their intervention might inadvertently increase the likelihood of extremes, in a manner that has not
previously been examined.38

More tentatively, the results may also have relevance for current financial issues in the US and Euro
zone. Proposition 4 suggests that the increased likelihood of extremes in today’s markets have been
precipitated by low expected costs previously (e.g. on the part of Greek debtors) and by a large gap
between the marginal rates of substitution for borrowers and lenders of capital. After expected costs
rise and marginal rates of substitution converge, then the elevated extremes will begin to play out.

4 Conclusions

Our paper develops a simple approach to endogenous extreme events. We suggest that the prob-
ability of extremes may vary systematically over time, and be explained on the basis of financial
congestion and network effects. Moreover, we distinguish exogenous from endogenous extremes,
the latter of which can be understood in a public good framework. This distinction has immedi-
ate policy implications: for truly exogenous extremes, we must focus on ex post protection, while
for endogenous extremes, we can in principle use economic incentives to entice agents to reduce
extremes themselves. We have three main contributions. First, we develop the ’signature’ of en-

36If markets are thin, then even risk-loving agents will be unable to transfer resources.
37More generally, Proposition 4 predicts that developments to enhance resource transfers will affect the

likelihood of extremes. These developments include may financial innovation and loose interest rates.
38Theoretically, regulators could tax ’excessive’ transfers. However, this requires extensive monitoring of

investor positions. A more realistic approach involves combining regulation with enhanced education about
costs of extreme events, and the role of individuals and institutions in precipitating these costs. This approach
is similar to recent education about other externalities such as effects of drunk driving, cigarette smoking,
and human impact on the natural environment.

26



dogenous extremes, and provide insight on their incidence: According to Proposition 4, economies
are more susceptible to extremes if expected costs are low and there is a large discrepancy between
marginal rates of substitutions for resource borrowers and lenders. Second, extreme episodes last
until marginal rates of substitution converge, or expected costs rise. Third and perhaps most in-
teresting, our approach (Corollary 1) suggests limits on the role for central bank and regulatory
intervention. In tackling issues related to economic instability, regulators can ameliorate the likeli-
hood of extremes, but only if they account for countervailing network effects.

While our paper describes a method for understanding patterns in the likelihood of extremes, it does
not aim to predict all possible extreme events. The aim is to show that, far from being random, the
probability of endogenous extremes may have similar patterns. We accomplished this aim using a
broad congestion-network approach, which allows us to relate the likelihood of extremes to eco-
nomic variables: resource transfers, expected costs and marginal rates of substitution. Our paper
may be seen as a step towards incorporating dynamic, endogenous, extremes into standard economic
analysis. Acknowledgement of endogenous extremes may also be helpful for risk management.
Important extensions include estimating financial congestion, identifying dynamic extremes in par-
ticular markets, and exploring various channels of endogenous extremes encountered in practice.
Such refinements present an exciting task for future research.
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Table 1: Different Faces of Congestion

Form of Congestion Researchers Main Effect
Excess borrowing Fisher (1933); Reinhart and Rogoff (2009b) Preponderance of debt ⇒ economy

susceptible to shocks
Excessive speculation Keynes (1936); Minsky (1982) Sudden shifts in confidence ⇒ large

changes in market prices
Lack of liquidity Allen and Gale (2007); Pedersen (2009); Simultaneous needs for liquidity ⇒ fragile

Brunnermeier and Pedersen (2009) credit markets

Over-confidence Odean (1999); Barber and Odean (2000a) Excessive trading ⇒ market inefficiency

Figure 1: Congestion Factors around the Crash of October 1987

The figure shows the behavior of liquidity and sentiment during the two months before and after
October 1987. Source: Author’s calculations. Spreads, turnover and VIX data are obtained from
Wharton Research Data Services (WRDS). Dow-Jones data are obtained from the Federal Reserve
Bank of St. Louis website.
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Figure 2: Congestion around the LTCM crisis of August 1998

The figure shows the behavior of liquidity and sentiment during the two months before and after
August 1998. Source: Author’s calculations. Spreads, turnover and VIX data are obtained from
Wharton Research Data Services (WRDS). Dow-Jones data are obtained from the Federal Reserve
Bank of St. Louis website.
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Figure 3: Congestion around the Lehman Brothers Bankruptcy of September 2008

The figure shows the behavior of liquidity and sentiment during the two months before and after
September 2008. Source: Author’s calculations. Spreads, turnover and VIX data are obtained from
Wharton Research Data Services (WRDS). Dow-Jones data are obtained from the Federal Reserve
Bank of St. Louis website.
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Figure 4: Congestion around the Flash Crash of May 2010

The figure shows the behavior of liquidity and sentiment during the two months before and after
the Flash Crash of May 2010. Source: Author’s calculations. Spreads, turnover and VIX data are
obtained from Wharton Research Data Services (WRDS). Dow-Jones data are obtained from the
Federal Reserve Bank of St. Louis website.
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Table 2: Rank Correlations for the Dow Jones, Liquidity and VIX

The table presents the Spearman (rank) correlations of the liquidity and confidence measures with
the Dow Jones Industrial Average. APLIQ denotes the market average of the Amihud (2002) liq-
uidity measure. SPREAD and TURNOVER denote the average dollar bid-ask spread and turnover,
respectively. VIX is the implied volatility of an at-the-money 30-day option, which reflects investor
confidence. All variables are in percentage changes relative to the previous trading day. The time
period for each extreme event comprises the four months surrounding the month of the event: for
the October 1987 crash, the sample period is August 1, 1987 to December 31, 1987. For the August
1998 LTCM event, the sample period is June 1, 1998 to October 31, 1998. For the September 2008
episode around the Lehman Brothers Bankruptcy, the sample period is July 1, 2008 to November
30, 2008. And for the May 2010 flash crash the period is March 1, 2010 to July 31, 2010. P-values
are in parentheses.

Panel A: Correlations around October 1987
DJIA ALIQ SPREAD TURNOVER VIX

ALIQ -0.133 1.000
(0.176)

SPREAD -0.037 -0.155 1.000
(0.704) (0.112)

TURNOVER 0.143 -0.240 0.716 1.000
(0.143) (0.013) (<.0001)

VIX -0.659 0.123 0.210 0.080 1.000
(<.0001) (0.210) (0.031) (0.416)

Panel B: Correlations around August 1998
DJIA ALIQ SPREAD TURNOVER VIX

ALIQ 0.108 1.000
(0.268)

SPREAD -0.126 -0.145 1.000
(0.199) (0.139)

TURNOVER 0.125 -0.215 0.197 1.000
(0.203) (0.027) (0.043)

VIX -0.837 -0.135 0.229 -0.032 1.000
(<.0001) (0.169) (0.018) (0.742)

Panel C: Correlations around September 2008
DJIA ALIQ SPREAD TURNOVER VIX

ALIQ -0.004 1.000
(0.966)

SPREAD -0.035 0.118 1.000
(0.720) (0.228)

TURNOVER 0.155 -0.139 0.525 1.000
(0.113) (0.156) (<.0001)

VIX -0.866 -0.015 0.088 -0.032 1.000
(<.0001) (0.881) (0.369) (0.748)

Panel D: Correlations around the May 2010 Flash Crash
DJIA ALIQ SPREAD TURNOVER VIX

ALIQ -0.060 1.000
(0.536)

SPREAD -0.152 0.169 1.000
(0.117) (0.081)

TURNOVER -0.201 0.071 0.560 1.000
(0.038) (0.467) (<.0001)

VIX -0.802 -0.004 0.210 0.275 1.000
(<.0001) (0.967) (0.030) (0.004)
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Table 3: Snapshot of Extreme Events in Financial Markets

Event Context Peak Trough % change
Panel A: US Crashes
October 28, 1929 Smoot-Hawley Tariff debate 301.22 260.64 −13.47%
October 19, 1987 Algorithmic Trading 2246.74 1738.74 −22.61%
August 31, 1998 LTCM, Russian Default 8051.68 7539.06 −6.37%
September 17, 2001 9/11 9605.51 8920.70 −7.13%
September 29, 2008 Lehman Brothers bankruptcy 11143.13 10365,45 −6.98%
October 15, 2008 Emergency Econ. Stability Act 9310.99 8577.91 −7.87%
May 6, 2010 Flash Crash 10868.12 10520.32 −3.20%
August 8, 2011 US Debt Downgrade 11444.61 10809.85 −5.55%

Panel B: Hong Kong Crashes
October 19-26, 1987 US spillover 3362.4 2241.7 −33.3%
February 4 - March 3, 1994 Bubble 12157.6 9802 −19.4%
October 17-28, 1997 Bubble 13601 9059.9 −33.4%

Source for Panel A: author calculations, based on data from the Federal Reserve Bank of St. Louis.
Source for Panel B: Sornette (2004). US data are for the Dow-Jones Industrial Average. Hong Kong
data are for the Hang Seng Index.

Table 4: Two Examples of Endogenous Probabilities

Effects felt in one Spillover effects
market or transaction in many markets

Asymmetric Information Moral Hazard

Symmetric or Asymmetric
Information Endogenous Extremes

Table 5: Excessive Resource Transfers and Extreme Events

Form of Resource Transfer Author
Over-borrowing, leverage Fisher (1933); Minsky (1982)
Excessive credit creation Allen and Gale (2000)

Large sales due to confidence shifts Reinhart and Rogoff (2009b); Keynes (1936)
Increased Trading Montier (2002); Gabaix et al. (2006)

Fire-sale asset liquidation Allen and Gale (2007)
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Table 6: Summary of Results

Result Explanation

Proposition 1 If only congestion effects are present, competitive markets yield higher CQ(·)

Proposition 2 If both congestion and network effects, equilibrium congestion inversely related
to network effects.

Proposition 3 If marginal congestion dominates network effect, then competitive CQ(·) is
smaller than social optimum

Corollary 1 If congestion dominates network effect, then tax policy can end up raising
tail risk

Proposition 4 In an economy with trade, likelihood of extremes increases with gap in
MRS between buyers and sellers, decreases with expected cost of extremes

Corollary 2 In an economy with trade, sufficient conditions for the end of an extreme episode
are that MRS are equated, or expected costs of extremes rise high enough

Proposition 5 In an economy with trade, the likelihood of extremes may be larger or smaller
in competitive markets

Proposition 6 If expected costs of extremes are infinite, there will be no trade, except for risk-
loving investors

40


