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Abstract 

A rent seeking model is axiomatized and analyzed where players exert multiple additive efforts. 

An analytical solution is developed when the contest intensity for one effort equals one. Then 

additional efforts give players higher expected utilities and lower rent dissipation, which contrasts 

with earlier findings for multiplicative efforts. Players optimize cost effectively across efforts, 

cutting back on the effort with contest intensity equal to one, and exerting alternative efforts 

instead. This latter effort eventually decreases towards zero as new efforts are added. It may not 

be optimal for both players to exert all their available efforts. Accounting for solutions which have 

to be determined numerically, a Nash equilibrium selection method is provided. For illustration, 

an example with maximum two efforts for each player is provided. Equilibria are shown where 

both players choose both efforts, or one player withdraws from its most costly effort. Both players 

may collectively prefer to exclude one of their efforts, though in equilibrium they may prefer both 

efforts. 
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1 Introduction 

The rent seeking literature has developed fruitfully for half a century (Congleton et al. 2008). Early 

developments are by Krueger (1974), Posner (1975), Tullock (1980), etc., reviewed by Nitzan 

(1994). Skaperdas (1996) axiomatizes the contest success function for symmetric contests, and 

Clark,Riis (1998) axiomatize asymmetric contests. Examples of rents are R&D budgets, 

promotions, licenses, privileges, monopoly opportunities, election opportunities, struggles for 

government support between different industries, competition for budgets by interest groups, and 

government distribution of public goods. Examples of efforts to obtain rents are multifarious, e.g. 

lobbying, influence strategies, interference struggles, litigation, strikes and lockouts, political 

campaigns, commercial efforts to raise rivals’ costs (Salop,Scheffman 1983), economic and 

political maneuvers (Hirshleifer 1995), coaxing, prompting, inducing, urging, extorting, exacting, 

persuasion techniques, pressure methods, promotions, briberies, skirmishes, battle, combat, and 

fighting with or without violence. 

 

Earlier research has mostly assumed one effort for each player, which is limiting given the plethora 

of possible efforts. This paper acknowledges that each player may have available arbitrarily many 

efforts which may or may not overlap with the contending player’s available efforts. Each effort 

may be of different nature and operate according to its own logic. Formally in this paper, efforts 

may have three different characteristics, i.e. different unit costs, different impacts, and different 

contest intensities. Efforts operate additively in the contest success function, which to our 

knowledge has not been analyzed earlier. 

 

Additive efforts are often descriptive. For example, consider players competing for an elected 

office position, e.g. U.S president. Each player hires professionals with various kinds of expertise, 

i.e. political analysts to develop views and positions on issues, media professionals for spin 

control, social media operatives, business people to recruit donors, telephone operators to 

convince voters, geographically dispersed ground troops knocking on people’s doors, speech 

writers to tune messages for big rallies and local meetings, gossip developers, and specialists in 

negative campaigning. These efforts may operate independently of each other and jointly add up 

to a campaign’s effort production function which impacts the contest with the other player(s). It 

is quite possible for a player’s campaign to be successful even if some efforts are missing e.g. due 

to strategic choice, oversight, lacking competence, or deficient funding. For example, a player 

may decide to eliminate negative campaigning and ground troops. Alternatively, a player may rely 
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on big colorful rallies applying hitherto unknown influence techniques that the other players are 

unable or unwilling to apply. 

 

One alternative to additive efforts is multiplicative efforts of the Cobb-Douglas type axiomatized 

and analyzed excellently by Arbatskaya,Mialon (2010), extended to a two-stage contest by 

Arbatskaya,Mialon (2012). One of their examples, also provided by Tullock (1980) and Krueger 

(1974), is that “firms may be able to obtain rents from the government not only by improving 

their efficiency, but also by lobbying or even bribing government officials” 

(Arbatskaya,Mialon 2010). Multiplicative efforts can be descriptive of this phenomenon when 

both improved efficiency and lobbying are mandatory for successful rent seeking. That is, 

improved efficiency without lobbying guarantees no success, and lobbying without improved 

efficiency guarantees no success. As the number of efforts increases, Cobb-Douglas type 

multiplicative efforts become increasingly unrealistic since each effort must be strictly positive 

to ensure success. The current paper opens for the possibility that improved efficiency without 

lobbying, or lobbying without improved efficiency, may both constitute successful rent 

seeking, although both operating additively may be even more successful. The different 

assumptions of additive and multiplicative efforts cause different results regarding efforts, 

expected utilities, and rent dissipation. For example, for additional efforts Arbatskaya,Mialon 

(2010) find increased rent dissipation for symmetric and balanced contests, whereas we find 

decreased rent dissipation caused by players optimizing more cost effectively across efforts. 

 

Another example of multiplicative efforts, but not of the Cobb-Douglas type, are by 

Epstein,Hefeker (2003). Assuming two efforts for each player, the first is conventional rent 

seeking. The second effort may be absent, or it may reinforce the first effort multiplicatively. They 

find that two efforts strengthen the player with the higher stake and decreases relative rent 

dissipation. 

 

Supplementing rent seeking with sabotage is another example of multiple efforts. Konrad (2000) 

assumes that one effort improves the player’s contest success whereas a second effort decreases 

the rival players’ success, which may increase lobbying efforts and rent dissipation. Chen (2003) 

considers competition for promotion involving efforts to enhance one’s own performance and 

efforts to sabotage the opponents’ performance. He finds that abler competitors are subject to more 

attacks. Amegashie,Runkel (2007) study sabotage in a three-stage elimination contest between 
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four players. They find one equilibrium where only the most able contestant engages in sabotage, 

and one equilibrium without sabotage. Krakel (2005) assumes that each player in the first stage 

chooses help, sabotage, or no action, and in the second stage chooses effort to win the tournament, 

which cause a variety of equilibria. 

 

Multiple efforts, i.e. production and appropriation, are also present in the conflict models by 

Hirshleifer (1995), Skaperdas,Syropoulos (1997), and Hausken (2005), but contest success 

depends only on appropriation. 

 

In the rent seeking literature the decisiveness or contest intensity parameter is generally considered 

to be a parameter at the contest level, and thus equivalent for both or all players. The authors are 

not aware of literature modeling different contest intensity parameters for different players. In this 

paper each effort operates according to its own logic with an intensity, scaling and impact 

independent of the other efforts. Hence the contest intensity parameters generally differ across 

players. Specific efforts by one player are thus not matched against specific efforts by the other 

player. Instead each player’s efforts are added up into an effort production function which 

competes against the other player’s effort production function. 

 

Section 2 axiomatizes the contest assuming multiple additive efforts. Section 3 models additive 

multi-effort contests. Section 4 analyzes the model. Section 5 concludes. 

 

2 Axiomatization 

Player ℎ ∈ {1,2} exerts 𝐾 efforts 𝑦ℎ𝑘, 𝑘 ∈ {1, … , 𝐾} at unit cost 𝑐ℎ𝑘 to increase his probability of 

winning a rent with value 𝑆 ≥ 0. Define 𝒚𝒉 = (𝑦ℎ1, … , 𝑦ℎ𝐾) as the vector of player ℎ′𝑠 𝐾 efforts. 

Rent dissipation is defined as 𝐷 = ∑ ∑ 𝑐ℎ𝑘𝑦ℎ𝑘
𝐾
𝑘=1

2
ℎ=1 /𝑆. Player ℎ′𝑠 expected utility is 

Πℎ(𝒚𝟏, 𝒚𝟐) = 𝑝ℎ(𝒚𝟏, 𝒚𝟐)𝑆 −∑𝑐ℎ𝑘𝑦ℎ𝑘

𝐾

𝑘=1

 (1) 

where 𝑝ℎ(𝒚𝟏, 𝒚𝟐) is player ℎ′𝑠 contest success function, i.e. winning probability, (𝒚𝟏, 𝒚𝟐) ∈ ℝ+
2𝐾. 

In accordance with Arbatskaya,Mialon (2010), we consider subcontests between any two of three 

players, ℎ ∈ 𝐻 ≡ {1,2,3}. We define 𝒚 = (𝒚𝟏, 𝒚𝟐, 𝒚𝟑) as the vector of the three players’ 3𝐾 

efforts, 𝒚−𝒉 as the vector of two of the players’ 2𝐾 efforts aside from player ℎ′𝑠 𝐾 efforts, and 

𝑝ℎ(𝒚) as player ℎ′𝑠 contest success function. 
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Axiom 1. (i) For all ℎ ∈ 𝐻 and 𝒚 ∈ ℝ+
3𝐾, 𝑝ℎ(𝒚) ≥ 0 and ∑ 𝑝ℎ(𝒚) ≤ 1ℎ∈𝐻 . 

(ii) For all ℎ ∈ 𝐻, if 𝑦ℎ𝑘 ∈ ℝ++
1  for at least one 𝑘 ∈ {1,… , 𝐾} and 𝒚−𝒉 ∈ ℝ+

2𝐾, then 𝑝ℎ(𝒚) > 0. 

(iii) For all ℎ ∈ 𝐻, if 𝒚𝒉 = 𝟎 and 𝒚−𝒉 ∈ ℝ+
2𝐾, then 𝑝ℎ(𝒚) = 0. 

(iv) If 𝑦ℎ𝑘 ∈ ℝ++
1  for at least one 𝑘 ∈ {1,… , 𝐾} and for some ℎ ∈ 𝐻, then ∑ 𝑝ℎ(𝒚) = 1ℎ∈𝐻 . 

 

Axiom 1 (i) and (iii) are the same as in Arbatskaya,Mialon (2010), whereas (ii) and (iv) are not. 

Axiom 1 (ii) states that if player ℎ exerts at least one positive effort, then his winning probability 

is positive regardless of the other players’ efforts. This contrasts with Arbatskaya,Mialon (2010) 

who require that all player ℎ′𝑠 𝐾 efforts have to be positive in order for his winning probability to 

be positive regardless of the other players’ efforts. Analogously, Axiom 1 (iv) states that if at least 

one player exerts at least one positive effort, then the winning probabilities sum to one. This also 

contrasts with Arbatskaya,Mialon (2010) who require that all the 𝐾 efforts by at least one player 

have to be positive in order for the winning probabilities to sum to one. Axioms 2 and 3 are as in 

Arbatskaya,Mialon (2010), i.e. 

 

Axiom 2. For all ℎ ≠ 𝑟 ≠ 𝑠 ∈ 𝐻, the odds ratio 
𝑝ℎ(𝒚)

𝑝𝑟(𝒚)
 does not depend on 𝒚𝒌 for 𝒚𝒉 ∈ ℝ+

𝐾, 

𝒚𝒓 ∈ ℝ++
𝐾 , and 𝒚𝒔 ∈ ℝ+

𝐾. 

 

Axiom 3. For all ℎ ∈ {1,2} and (𝒚𝟏, 𝒚𝟐) ∈ ℝ+
2𝐾, 𝑝ℎ(𝒚𝟏, 𝒚𝟐) = 𝑝ℎ(𝒚𝟏, 𝒚𝟐, 𝒚𝟑 = 𝟎). 

 

Lemma 1. If Axioms 1,2,3 hold, then player ℎ′𝑠 contest success function, ℎ ∈ {1,2}, in a two 

player contest where each player exerts 𝐾 efforts is 

𝑝ℎ(𝒚𝟏, 𝒚𝟐)

{
 
 
 

 
 
 =

𝑓ℎ(𝒚𝒉)

𝑓1(𝒚𝟏) + 𝑓2(𝒚𝟐)
 𝑖𝑓 𝑦1𝑘 ∈ ℝ++

1  or 𝑦2𝑘 ∈ ℝ++
1                         

for at least one 𝑘 ∈ {1,… , 𝐾}                                           

≥ 0 𝑎𝑛𝑑 𝑝1(𝒚𝟏, 𝒚𝟐) + 𝑝2(𝒚𝟏, 𝒚𝟐) ≤ 1 𝑖𝑓 𝑦1𝑘 ∈ ℝ+
1 \ℝ++

1  and

𝑦2𝑟 ∈ ℝ+
1 \ℝ++

1  for at least one 𝑘 ∈ {1, … , 𝐾}              

and at least one 𝑟 ∈ {1, … , 𝐾}                                          
= 0 𝑖𝑓 𝒚𝒉 = 𝟎                                                                                     

 (2) 

where player ℎ′𝑠 production function 𝑓ℎ(𝒚𝒉) satisfies  

𝑓ℎ(𝒚𝒉) {

> 0 𝑖𝑓 𝑦ℎ𝑘 ∈ ℝ++
1  for at least one 𝑘 ∈ {1, … , 𝐾}

≥ 0 𝑖𝑓 𝑦ℎ𝑘 ∈ ℝ+
1  for at least one 𝑘 ∈ {1,… , 𝐾}  

= 0 𝑖𝑓 𝒚𝒉 = 𝟎                                                              

 (3) 
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Proof. Appendix A. 

 

Lemma 1 differs from Arbatskaya,Mialon (2010) e.g. in that it is sufficient that one of the 𝐾 efforts 

are positive to cause 𝑓ℎ(𝒚𝒉) and 𝑝ℎ(𝒚𝟏, 𝒚𝟐) to be positive. 

 

Axiom 4. For all ℎ ≠ 𝑟, ℎ ∈ {1,2}, 𝑟 ∈ {1,2}, 𝑘 ∈ {1,… , 𝐾}, and 𝑛 ∈ {1,… , 𝐾}, 𝑝ℎ(𝒚𝟏, 𝒚𝟐) is 

nondecreasing in 𝑦ℎ𝑘 if 𝑦ℎ𝑘 ∈ ℝ+
1  and 𝑦𝑟𝑛 ∈ ℝ+

1  for at least one 𝑛 ∈ {1, … , 𝐾}, and continuous 

and strictly increasing in 𝑦ℎ𝑘 if 𝑦ℎ𝑘 ∈ ℝ++
1  and 𝑦𝑟𝑛 ∈ ℝ++

1  for at least one 𝑛 ∈ {1, … , 𝐾}. 

 

Axiom 4 states that each player’s success probability is nondecreasing in any given effort by that 

player if that given effort is positive and at least one effort by the other player is positive. 

Furthermore, each player’s success probability is continuous and strictly increasing in any given 

effort by that player if that given effort is strictly positive and at least one effort by the other player 

is strictly positive. This contrasts with Arbatskaya,Mialon (2010) who require that each player’s 

success probability is nondecreasing in any given effort by that player if all 2𝐾 efforts by both 

players are positive. Furthermore, they require that each player’s success probability is continuous 

and strictly increasing in any given effort by that player if all 2𝐾 efforts by both players are strictly 

positive. 

 

Axiom 5. For all ℎ ∈ {1,2} and 𝜆 > 0, 𝑝ℎ(𝜆𝑓1(𝒚𝟏), 𝜆𝑓2(𝒚𝟐)) = 𝑝ℎ(𝒚𝟏, 𝒚𝟐). 

 

Axiom 5 states that an equiproportionate change in both players’ production functions 𝑓1(𝒚𝟏) and 

𝑓2(𝒚𝟐) does not impact the players’ success probabilities. This is a weaker requirement than 

Arbatskaya and Mialon’s (2010) Axiom 5 which requires that an equiproportionate change in 

corresponding single efforts, i.e. for any 𝑘 ∈ {1, … , 𝐾}, for both players does not impact the 

players’ success probabilities. Their Axiom 5 implies Cobb-Douglas production functions, 

whereas this paper’s Axiom 5 allows any production function. 

 

Axiom 6. For all ℎ ≠ 𝑟, ℎ ∈ {1,2}, 𝑟 ∈ {1,2}, if 𝑎 ∈ ℝ++
1  or 𝑏 > 1, then 𝑝ℎ(𝑓ℎ(𝒚𝟏)𝑏 +

𝑎, 𝑓𝑟(𝒚𝟐)) > 𝑝ℎ(𝑓ℎ(𝒚𝟏), 𝑓𝑟(𝒚𝟐)). 
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Axiom 6 states that adding a strictly positive constant to a player’s production function, or 

multiplying a player’s production function with a constant strictly larger than one, causes higher 

success probability. 

 

Axiom 7. For all ℎ ∈ {1,2}, 𝑘 ≠ 𝑟, 𝑘 ∈ {1,… , 𝐾}, 𝑟 ∈ {1,… , 𝐾}, assume 𝑓ℎ(𝒚𝒉) =

𝑓ℎ(𝑦ℎ1, … , 𝑦ℎ𝑘, … , 𝑦ℎ𝐾) = 𝑓ℎ(𝑓ℎ1(𝑦ℎ1),… , 𝑓ℎ𝑘(𝑦ℎ𝑘),… , 𝑓ℎ𝐾(𝑦ℎ𝐾)) = ∑ 𝑓ℎ𝑘(𝑦ℎ𝑘)
𝐾
𝑘=1 =

∑ 𝑓ℎ(𝑦ℎ𝑘)
𝐾
𝑘=1 , 𝜕𝑓ℎ(𝑦ℎ1, … , 𝑦ℎ𝑘, … , 𝑦ℎ𝐾)/𝜕𝑦ℎ𝑘 = 𝜕𝑓ℎ(𝑦ℎ𝑘)/𝜕𝑦ℎ𝑘 ≠ 0, and 𝜕𝑓ℎ(𝑦ℎ𝑘)/𝜕𝑦ℎ𝑟 =

0. 

 

Axiom 7 assumes that player ℎ′𝑠 production function 𝑓ℎ(𝒚𝒉) is separable into 𝐾 additive 

independent production functions 𝑓ℎ𝑘(𝑦ℎ𝑘) = 𝑓ℎ(𝑦ℎ𝑘), i.e. one production function for each 

effort 𝑦ℎ𝑘. This differs from the multiplicative, and thus not additive, Cobb-Douglas production 

function implied by Arbatskaya and Mialon’s (2010) Axiom 5. 

 

Axiom 8. For all ℎ ∈ {1,2} and 𝑘 ∈ {1, … , 𝐾}, if 𝑑ℎ𝑘 ∈ ℝ+
1  and 𝑚𝑘 ∈ ℝ+

1 , then 𝑓ℎ(𝑦ℎ𝑘) =

𝑑ℎ𝑘𝑦ℎ𝑘
𝑚𝑘  and 𝑓ℎ(𝑦ℎ1, … , 𝑦ℎ𝑘) = 𝑓ℎ(𝑦ℎ1, … , 𝑦ℎ𝑘−1) + 𝑓ℎ(𝑦ℎ𝑘). 

 

Axiom 8 assumes a functional form for the additive production function. 

 

Lemma 2. When Axioms 1-8 hold, for all ℎ ∈ {1,2}  and 𝑘 ∈ {1, … , 𝐾}, 𝑓ℎ(𝒚𝒉) = ∑ 𝑑ℎ𝑘𝑦ℎ𝑘
𝑚𝑘𝐾

𝑘=1 . 

 

Proof. Follows from Axioms 1-8 and Lemma 1. 

 

Axiom 9. For all ℎ = 1,2, 𝑝ℎ(𝒚𝟏, 𝒚𝟐) = 1/2 if 𝒚𝟏 = 𝒚𝟐 = 𝟎. 

 

Axiom 9 assumes that the players’ share the rent equally if both withdraw from exerting effort. 

 

Axiom 10. For any (𝒚𝟏, 𝒚𝟐) ∈ ℝ+
2𝐾, 𝑝1(𝒚𝟏, 𝒚𝟐) = 𝑝2(𝒚𝟐, 𝒚𝟏), 

 

Axiom 10 assumes symmetry or anonymity in the sense that the players’ efforts, and not their 

identities, determine their winning probabilities. Axiom 10 does not apply e.g. if equal efforts by 

the players cause different winning probabilities. 
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3 Modeling additive multi-effort contests 

Consistently with Axioms 1-9 and Lemmas 1-2 we assume that two players compete for a rent 

𝑆 ≥ 0. To decrease the number of subscripts we use regular letters for player 1 and capital letters 

for player 2. Player 1 exerts m rent seeking efforts 𝑥𝑖 at unit cost 𝑐𝑖≥0. Player 2 exerts M rent 

seeking efforts 𝑋𝑗 at unit cost 𝐶𝑗≥0. We define 𝐾 = 𝑚𝑎𝑥{𝑚,𝑀} which means that if 𝑚 ≠ 𝑀, 

then one player exerts fewer efforts than the other player. For the axiomatization in section 2 this 

means that the efforts not exerted by the player exerting fewest efforts are set to zero. Each player’s 

efforts have additive impact on the contest. Player 1’s effort production function is ∑ 𝑑𝑖𝑥𝑖
𝑚𝑖𝑚

𝑖=1 , 

where 𝑑𝑖 is a proportional scaling parameter for impact and 𝑚𝑖≥0 is player 1’s decisiveness or 

contest intensity which scales as an exponent the impact of each effort 𝑥𝑖. Analogously, player 2’s 

effort production function is ∑ 𝐷𝑗𝑋𝑗
𝑀𝑗𝑀

𝑗=1 , where 𝐷𝑗  is a proportional scaling parameter for impact 

and 𝑀𝑗≥0 scales the impact of each effort 𝑋𝑗 as an exponent.1 Applying the ratio form contest 

success function (Tullock 1980; Skaperdas 1996), the probability that player 1 wins the rent is 

𝑝1 = 𝑝1(𝑥1, … , 𝑥𝑚, 𝑋1, … , 𝑋𝑀) =
∑ 𝑑𝑖𝑥𝑖

𝑚𝑖𝑚
𝑖=1

∑ 𝑑𝑖𝑥𝑖
𝑚𝑖𝑚

𝑖=1 + ∑ 𝐷𝑗𝑋𝑗
𝑀𝑗𝑀

𝑗=1

 (4) 

which also can be interpreted as the fraction of the rent earned by player 1 if the rent is sharable, 

𝜕𝑝1/𝜕𝑥𝑖 ≥ 0 and 𝜕𝑝1/𝜕𝑋𝑗 ≤ 0. The probability that player 2 wins the rent is 𝑝2 =

𝑝2(𝑥1, … , 𝑥𝑚, 𝑋1, … , 𝑋𝑀) = 1 − 𝑝1. If the players exert no efforts we set 𝑝1 = 1/2. Multiplying 

each player’s probability of winning the rent with the rent S, and subtracting the effort cost 

expenditures, the expected utilities are 

𝑢 =
∑ 𝑑𝑖𝑥𝑖

𝑚𝑖𝑚
𝑖=1

∑ 𝑑𝑖𝑥𝑖
𝑚𝑖𝑚

𝑖=1 + ∑ 𝐷𝑗𝑋𝑗
𝑀𝑗𝑀

𝑗=1

𝑆 −∑𝑐𝑖𝑥𝑖

𝑚

𝑖=1

, 

𝑈 =
∑ 𝐷𝑗𝑋𝑗

𝑀𝑗𝑀
𝑗=1

∑ 𝑑𝑖𝑥𝑖
𝑚𝑖𝑚

𝑖=1 + ∑ 𝐷𝑗𝑋𝑗
𝑀𝑗𝑀

𝑗=1

𝑆 −∑𝐶𝑗𝑋𝑗

𝑀

𝑗=1

 

(5) 

for player 1 and player 2, respectively. If the players exert no efforts we set 𝑢 = 𝑈 = 𝑆/2. The 

model has 3𝑚 + 3𝑀 + 2 parameters, i.e. 𝑚+𝑀 unit efforts costs 𝑐𝑖 and 𝐶𝑗, 𝑚 +𝑀 scaling 

parameters 𝑑𝑖 and 𝐷𝑗 , 𝑚 +𝑀 contest intensities 𝑚𝑖 and 𝑀𝑗, and 𝑚 and 𝑀 for the numbers of 

                                                 
1 When 𝑚𝑖 = 𝑀𝑗 = 0 , the efforts have no impact. When 0 < 𝑚𝑖 = 𝑀𝑗 < 1, the efforts have less than proportional 

impact. When 𝑚𝑖 = 𝑀𝑗 = 1, the efforts have proportional impact. When 0 < 𝑚𝑖 = 𝑀𝑗 < 1, the efforts have more 

than proportional impact. 
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efforts which are the players’ strategic choice variables. Both players choose their strategies 

simultaneously and independently. Appendix B shows the nomenclature. 

 

4 Solving the model 

Differentiating (5), the first order conditions are 

𝜕𝑢

𝜕𝑥𝑖
=

𝑆𝑚𝑖𝑑𝑖𝑥𝑖
𝑚𝑖−1∑ 𝐷𝑗𝑋𝑗

𝑀𝑗𝑀
𝑗=1

(∑ 𝑑𝑖𝑥𝑖
𝑚𝑖𝑚

𝑖=1 + ∑ 𝐷𝑗𝑋𝑗
𝑀𝑗𝑀

𝑗=1 )
2 − 𝑐𝑖 = 0 ⟺

𝑆∑ 𝐷𝑗𝑋𝑗
𝑀𝑗𝑀

𝑗=1

(∑ 𝑑𝑖𝑥𝑖
𝑚𝑖𝑚

𝑖=1 + ∑ 𝐷𝑗𝑋𝑗
𝑀𝑗𝑀

𝑗=1 )
2 =

𝑐𝑖

𝑚𝑖𝑑𝑖𝑥𝑖
𝑚𝑖−1

, 

𝜕𝑈

𝜕𝑋𝑗
=

𝑆𝑀𝑗𝐷𝑗𝑋𝑗
𝑀𝑗−1∑ 𝑑𝑖𝑥𝑖

𝑚𝑖𝑚
𝑖=1

(∑ 𝑑𝑖𝑥𝑖
𝑚𝑖𝑚

𝑖=1 + ∑ 𝐷𝑗𝑋𝑗
𝑀𝑗𝑀

𝑗=1 )
2 − 𝐶𝑗 = 0 ⟺

𝑆∑ 𝑑𝑖𝑥𝑖
𝑚𝑖𝑚

𝑖=1

(∑ 𝑑𝑖𝑥𝑖
𝑚𝑖𝑚

𝑖=1 + ∑ 𝐷𝑗𝑋𝑗
𝑀𝑗𝑀

𝑗=1 )
2 =

𝐶𝑗

𝑀𝑗𝐷𝑗𝑋𝑗
𝑀𝑗−1

 

(6) 

Equation (6) allows expressing all efforts for each player as functions of one effort for that player. 

Without loss of generality we choose that one effort to be 𝑥1 for player 1 and 𝑋1 for player 2. 

Solving (6) gives 

𝑐𝑖

𝑚𝑖𝑑𝑖𝑥𝑖
𝑚𝑖−1

=
𝑐1

𝑚1𝑑1𝑥1
𝑚1−1

⟺ 𝑥𝑖 = 𝑥1

1−𝑚1
1−𝑚𝑖 (

𝑚𝑖𝑑𝑖𝑐1
𝑚1𝑑1𝑐𝑖

)

1
1−𝑚𝑖

, 𝑖 = 2, . . . , 𝑚 

𝐶𝑗

𝑀𝑗𝐷𝑗𝑋𝑗
𝑀𝑗−1

=
𝐶1

𝑀1𝐷1𝑋1
𝑀1−1

⟺𝑋𝑗 = 𝑋1

1−𝑀1
1−𝑀𝑗 (

𝑀𝑗𝐷𝑗𝐶1

𝑀1𝐷1𝐶𝑗
)

1
1−𝑀𝑗

, 𝑗 = 2,… ,𝑀 

(7) 

Inserting (7) into (6) and solving gives 

𝑥1
𝑚1 =

𝑚1
2𝑀1𝐶1𝑑1𝐷1𝑋1

1−𝑀1𝑆

(𝑚1𝐶1𝑑1𝑋1
1−𝑀1 +𝑀1𝑐1𝐷1𝑥1

1−𝑚1)
2 −

1

𝑑1
∑𝑑𝑖𝑥1

𝑚𝑖(1−𝑚1)
1−𝑚𝑖 (

𝑚𝑖𝑑𝑖𝑐1
𝑚1𝑑1𝑐𝑖

)

𝑚𝑖
1−𝑚𝑖

𝑚

𝑖=2

, 

𝑋1
𝑀1 =

𝑚1𝑀1
2𝑐1𝑑1𝐷1𝑥1

1−𝑚1𝑆

(𝑚1𝐶1𝑑1𝑋1
1−𝑀1 +𝑀1𝑐1𝐷1𝑥1

1−𝑚1)
2 −

1

𝐷1
∑𝐷𝑗𝑋1

𝑀𝑗(1−𝑀1)

1−𝑀𝑗 (
𝑀𝑗𝐷𝑗𝐶1

𝑀1𝐷1𝐶𝑗
)

𝑀𝑗

1−𝑀𝑗
𝑀

𝑗=2

 

(8) 

which are two equations with two unknown 𝑥1 and 𝑋1, where 𝑥𝑖 and 𝑋𝑗 follow from (7). 

Differentiating (6), the second order conditions are satisfied e.g. when 𝑚i ≤ 1 and 𝑀j ≤ 1, i.e. 

𝜕2𝑢

𝜕𝑥𝑖
2 = 𝑆𝑚𝑖𝑑𝑖𝑥𝑖

𝑚𝑖−2∑𝐷𝑗𝑋𝑗
𝑀𝑗

𝑀

𝑗=1

(𝑚𝑖 − 1) (∑ 𝑑𝑖𝑥𝑖
𝑚𝑖𝑚

𝑖=1 + ∑ 𝐷𝑗𝑋𝑗
𝑀𝑗𝑀

𝑗=1 ) − 2𝑚𝑖𝑑𝑖𝑥𝑖
𝑚𝑖

(∑ 𝑑𝑖𝑥𝑖
𝑚𝑖𝑚

𝑖=1 + ∑ 𝐷𝑗𝑋𝑗
𝑀𝑗𝑀

𝑗=1 )
3 ≤ 0, 

𝜕2𝑈

𝜕𝑋𝑗
2 = 𝑆𝑀𝑗𝐷𝑗𝑋𝑗

𝑀𝑗−2∑𝑑𝑖𝑥𝑖
𝑚𝑖

𝑚

𝑖=1

(𝑀𝑗 − 1) (∑ 𝑑𝑖𝑥𝑖
𝑚𝑖𝑚

𝑖=1 + ∑ 𝐷𝑗𝑋𝑗
𝑀𝑗𝑀

𝑗=1 ) − 2𝑀𝑗𝐷𝑗𝑋𝑗
𝑀𝑗

(∑ 𝑑𝑖𝑥𝑖
𝑚𝑖𝑚

𝑖=1 + ∑ 𝐷𝑗𝑋𝑗
𝑀𝑗𝑀

𝑗=1 )
3 ≤ 0 

(9) 

Although (7) and (8) are numerically solvable, they are not analytically solvable for all 𝑚𝑖 and 

𝑀𝑗. The next subsections develop solutions with various assumptions for (7) and (8). 
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4.1 Removing redundant efforts 

If 𝑚𝑘 = 𝑚𝑖 for at least one 𝑘 = 1,… ,𝑚, 𝑘 ≠ 𝑖 or 𝑀𝑘 = 𝑀𝑗 for at least one 𝑘 = 1,… ,𝑀, 𝑘 ≠ 𝑗, 

then at least one other effort, 𝑥𝑘 or 𝑋𝑘, has the same decisiveness as either 𝑥𝑖 (when 𝑚𝑘 = 𝑚𝑖) or 

𝑋𝑗 (when 𝑀𝑘 = 𝑀𝑗). The least costly of these efforts is retained. That is, for player 1, if 𝑐𝑖 ≤ 𝑐𝑘, 

effort 𝑥𝑘 is removed, efforts 𝑥𝑘+1, … , 𝑥𝑚 are relabeled as efforts 𝑥𝑘, … , 𝑥𝑚−1, and 𝑚 is decreased 

by 1. Conversely, if 𝑐𝑖 > 𝑐𝑘, effort 𝑥𝑖 is removed, efforts 𝑥𝑖+1, … , 𝑥𝑚 are relabeled as efforts 

𝑥𝑖 , … , 𝑥𝑚−1, and 𝑚 is decreased by 1. Analogously for player 2, if 𝐶𝑗 ≤ 𝐶𝑘, effort 𝑋𝑘 is removed, 

efforts 𝑋𝑘+1, … , 𝑋𝑀 are relabeled as efforts 𝑋𝑘, … , 𝑋𝑀−1, and 𝑀 is decreased by 1. Conversely, if 

𝐶𝑗 > 𝐶𝑘, effort 𝑋𝑗 is removed, efforts 𝑋𝑗+1, … , 𝑋𝑀 are relabeled as efforts 𝑋𝑗 , … , 𝑋𝑀−1, and 𝑀 is 

decreased by 1. This procedure is repeated until 𝑚𝑘 ≠ 𝑚𝑖 , 𝑘 = 1, … ,𝑚, 𝑘 ≠ 𝑖 and 𝑀𝑘 ≠ 𝑀𝑗 , 𝑘 =

1, … ,𝑀, 𝑘 ≠ 𝑗. 

 

4.2 𝑚 efforts against 𝑀 efforts 

This section assumes 𝑚 ≥ 1,𝑀 ≥ 1,𝑚1 = 𝑀1 = 1, 0 < 𝑚𝑖 < 1, 𝑖 = 2,… ,𝑚; 0 < 𝑀𝑗 < 1, 𝑗 =

2, … ,𝑀;𝑥1 ≥ 0,𝑋1 ≥ 0. One common choice for the contest intensity is one, assumed without 

loss of generality for efforts 𝑥1 and 𝑋1. Inserting 𝑚1 = 𝑀1 = 1 into (7) and (8) gives 

𝑥1 =
𝐶1𝑑1𝐷1𝑆

(𝐶1𝑑1 + 𝑐1𝐷1)2
−
1

𝑑1
∑𝑑𝑖 (

𝑚𝑖𝑑𝑖𝑐1
𝑑1𝑐𝑖

)

𝑚𝑖
1−𝑚𝑖

𝑚

𝑖=2

, 𝑥𝑖 = (
𝑚𝑖𝑑𝑖𝑐1
𝑑1𝑐𝑖

)

1
1−𝑚𝑖

, 𝑖 = 2,… ,𝑚, 

𝑋1 =
𝑐1𝑑1𝐷1𝑆

(𝐶1𝑑1 + 𝑐1𝐷1)2
−
1

𝐷1
∑𝐷𝑗 (

𝑀𝑗𝐷𝑗𝐶1

𝐷1𝐶𝑗
)

𝑀𝑗

1−𝑀𝑗
𝑀

𝑗=2

, 𝑋𝑗 = (
𝑀𝑗𝐷𝑗𝐶1

𝐷1𝐶𝑗
)

1
1−𝑀𝑗

, 𝑗 = 2,… ,𝑀 

 

(10) 

which are inserted into (5) to yield 

𝑢 =
𝐶1
2𝑑1

2𝑆

(𝐶1𝑑1 + 𝑐1𝐷1)2
+∑𝑐𝑖 (

𝑚𝑖𝑑𝑖𝑐1
𝑑1𝑐𝑖

)

1
1−𝑚𝑖

(
1

𝑚𝑖
− 1)

𝑚

𝑖=2

, 

𝑈 =
𝑐1
2𝐷1

2𝑆

(𝐶1𝑑1 + 𝑐1𝐷1)2
+∑𝐶𝑗 (

𝑀𝑗𝐷𝑗𝐶1

𝐷1𝐶𝑗
)

1
1−𝑀𝑗

(
1

𝑀𝑗
− 1)

𝑀

𝑗=2

 

(11) 

with rent dissipation 
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𝐷 =
1

𝑆
(∑𝑐𝑖𝑥𝑖

𝑚

𝑖=2

+∑𝐶𝑗𝑋𝑗

𝑀

𝑗=2

) 

=
2𝑐1𝐶1𝑑1𝐷1

(𝐶1𝑑1 + 𝑐1𝐷1)
2
−
1

𝑆
(∑(

1

𝑚𝑖
− 1) 𝑐𝑖 (

𝑚𝑖𝑑𝑖𝑐1
𝑑1𝑐𝑖

)

1
1−𝑚𝑖

+∑(
1

𝑀𝑗
− 1)𝐶𝑗 (

𝑀𝑗𝐷𝑗𝐶1

𝐷1𝐶𝑗
)

1
1−𝑀𝑗

𝑀

𝑗=2

𝑚

𝑖=2

) 

 

(12) 

Differentiating (6), the second order conditions inserting (10) are always satisfied, i.e. 

𝜕2𝑢

𝜕𝑥𝑖
2 =

𝑐𝑖
𝑥𝑖
(𝑚𝑖 − 1 −

2𝑚𝑖𝑑𝑖𝑥𝑖
𝑚𝑖(𝐶1𝑑1 + 𝑐1𝐷1)

𝑑1𝐷1𝑆
) < 0, 

𝜕2𝑈

𝜕𝑋𝑗
2 =

𝐶𝑗

𝑋𝑗
(𝑀𝑗 − 1 −

2𝑀𝑗𝐷𝑗𝑋𝑗
𝑀𝑗(𝐶1𝑑1 + 𝑐1𝐷1)

𝑑1𝐷1𝑆
) < 0 

(13) 

 

Proposition 1. Although 𝑢 > 0 and 𝑈 > 0 in (11), and 𝑥𝑖 > 0 and 𝑋𝑗 > 0 in (10),  𝑥1 and 𝑋1 in 

(10) are not guaranteed to be positive. When 𝑚1 = 𝑀1 = 1, 0 < 𝑚i < 1, 𝑖 = 2,… ,𝑚; 0 < 𝑀j <

1, 𝑗 = 2,… ,𝑀;𝑥1 ≥ 0,𝑋1 ≥ 0, then 
𝜕𝑥1

𝜕𝑚
< 0,

𝜕𝑋1

𝜕𝑀
< 0,

𝜕𝑥1

𝜕𝑑𝑖
< 0,

𝜕𝑋1

𝜕𝐷𝑗
< 0,

𝜕𝑥1

𝜕𝑐1
< 0,

𝜕𝑋1

𝜕𝐶1
< 0,

𝜕𝑥1

𝜕𝑐𝑖
>

0,
𝜕𝑋1

𝜕𝐶𝑗
> 0,

𝜕𝑥1

𝜕𝑆
> 0,

𝜕𝑋1

𝜕𝑆
> 0,

𝜕𝑥1

𝜕𝑚𝑖
> 0  𝑖𝑓 ln (

𝑚𝑖𝑑𝑖𝑐1

𝑑1𝑐𝑖
) < 𝑚𝑖 − 1,

𝜕𝑋1

𝜕𝑀𝑗
> 0 𝑖𝑓 ln (

𝑀𝑗𝐷𝑗𝐶1

𝐷1𝐶𝑗
) <

𝑀𝑗 − 1. 

 

Proof. Appendix C. 

 

Proposition 1 states that the players’ efforts 𝑥1 and 𝑋1 decrease as the numbers 𝑚 and 𝑀 of efforts 

increase. Additional available efforts 𝑥i and 𝑋i enable a player to optimally and thus cost-

effectively choose among these additional efforts, and thus cut back on the extent to which efforts 

𝑥1 and 𝑋1 are utilized. But limits exist. Equation (10) shows that 𝑥1 and 𝑋1 can be negative, 

invalidating the solution, if the negative summation term exceeds the positive term. Player 1’s 

effort 𝑥1 decreases, eventually becoming negative rendering the solution in (10) and (11) invalid, 

when its unit cost 𝑐1 increases, or the impact 𝑑𝑖 of player 1’s other efforts 𝑥𝑖 increases. Conversely, 

𝑥1 increases when the rent S or the unit costs 𝑐𝑖 of player 1’s other efforts 𝑥𝑖 increases. 

Analogously, player 2’s effort 𝑋1 decreases when its unit cost 𝐶1 increases, or the impact 𝐷𝑗  of 

player 2’s other efforts 𝑋𝑗 increases. Conversely, 𝑋1 increases when the rent S or the unit costs 𝐶𝑗 
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of player 2’s other efforts 𝑋𝑗 increases. Appendix C shows some other instances, dependent on 

various combinations of parameter values, where 𝑥1 or 𝑋1 is negative. 

 

Proposition 2. When 𝑚1 = 𝑀1 = 1, 0 < 𝑚i < 1, 𝑖 = 2,… ,𝑚; 0 < 𝑀j < 1, 𝑗 = 2,… ,𝑀;x1 ≥

0,𝑋1 ≥ 0, then 
𝜕𝑥𝑖

𝜕𝑚
= 0,

𝜕𝑋𝑖

𝜕𝑀
= 0,

𝜕𝑥𝑖

𝜕𝑑1
< 0, 

𝜕𝑋𝑗

𝜕𝐷1
< 0,

𝜕𝑥𝑖

𝜕𝑑𝑖
> 0,

𝜕𝑋𝑗

𝜕𝐷𝑗
> 0,

𝜕𝑥𝑖

𝜕𝑐1
> 0,

𝜕𝑋𝑗

𝜕𝐶1
> 0,

𝜕𝑥𝑖

𝜕𝑐𝑖
< 0,

𝜕𝑋𝑗

𝜕𝐶𝑗
< 0, 

𝜕𝑥𝑖

𝜕𝑆
= 0,

𝜕𝑋𝑗

𝜕𝑆
= 0,

𝜕𝑥𝑖

𝜕𝑚𝑖
> 0 𝑖𝑓 ln (

𝑚𝑖𝑑𝑖𝑐1

𝑑1𝑐𝑖
) > 1 −

1

𝑚𝑖
,
𝜕𝑋𝑗

𝜕𝑀𝑗
> 0 𝑖𝑓 ln (

𝑀𝑗𝐷𝑗𝐶1

𝐷1𝐶𝑗
) > 1 −

1

𝑀𝑗
. 

 

Proof. Appendix C. 

 

Proposition 2 shows that a player’s effort, 𝑥i or 𝑋j, increases in its impact and the player’s first 

effort’s unit cost, 𝑐1 or 𝐶1, and decreases in its unit cost and the player’s first effort’s impact, 𝑑1 

or 𝐷1. Whereas 𝑥1 and 𝑋1 decrease in 𝑚 and 𝑀, and 𝑥i and 𝑋i are independent of 𝑚 and 𝑀, 

Arbatskaya,Mialon (2010) find that adding additional efforts decreases the effort amounts for the 

efforts already in play if the added efforts unbalances the contest, i.e. makes one player sufficiently 

stronger or more advantaged. However, Epstein,Hefeker (2003) find that if both players use their 

second efforts, they will invest less in their first efforts, which is more in accordance with our 

finding. 

 

Proposition 3. When 𝑚1 = 𝑀1 = 1, 0 < 𝑚i < 1, 𝑖 = 2,… ,𝑚; 0 < 𝑀j < 1, 𝑗 = 2,… ,𝑀;x1 ≥

0,𝑋1 ≥ 0, then 
𝜕𝑈

𝜕𝑚
> 0,

𝜕𝑢

𝜕𝑀
> 0,

𝜕𝑢

𝜕𝑑𝑖
> 0,

𝜕𝑈

𝜕𝐷𝑗
> 0,

𝜕𝑢

𝜕𝑐𝑖
< 0,

𝜕𝑈

𝜕𝐶𝑗
< 0, 

𝜕𝑢

𝜕𝑆
> 0,

𝜕𝑈

𝜕𝑆
> 0,

𝜕𝑢

𝜕𝑚𝑖
>

0 if ln (
𝑚𝑖𝑑𝑖𝑐1

𝑑1𝑐𝑖
) > 0,

𝜕𝑈

𝜕𝑀𝑗
> 0 if ln (

𝑀𝑗𝐷𝑗𝐶1

𝐷1𝐶𝑗
) > 0. 

 

Proof. Appendix C. 

 

Proposition 3 shows that a player’s expected utility, 𝑢 or 𝑈, increases in the number 𝑚 or 𝑀 of 

available efforts due to increased cost-effectiveness. This useful result combined with Proposition 

1 means that if a player’ rent seeking is moderately successful by focusing solely on improved 

efficiency as its single effort, increased success can be obtained by adding e.g. lobbying or bribing 

as a second effort, and cutting back on the first effort. Further, 𝑢 or 𝑈, increases in the rent 𝑆 

and the impacts 𝑑𝑖 or 𝐷𝑗 , and decreases in the unit costs 𝑐𝑖 or 𝐶𝑗. For example when 
𝑑𝑖𝑐1

𝑑1𝑐𝑖
=

𝐷𝑗𝐶1

𝐷1𝐶𝑗
=
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1 which causes negative logarithms, 𝑢 or 𝑈 decreases in the contest intensities 𝑚𝑖 or 𝑀𝑗, 

respectively. 

 

Proposition 4. When 𝑚1 = 𝑀1 = 1, 0 < 𝑚i < 1, 𝑖 = 2,… ,𝑚; 0 < 𝑀j < 1, 𝑗 = 2,… ,𝑀;x1 ≥

0,𝑋1 ≥ 0, then 
𝜕𝐷

𝜕𝑚
< 0,

𝜕𝐷

𝜕𝑀
< 0,

𝜕𝐷

𝜕𝑑𝑖
< 0,

𝜕𝐷

𝜕𝐷𝑗
< 0,

𝜕𝐷

𝜕𝑐𝑖
> 0,

𝜕𝐷

𝜕𝐶𝑗
> 0, 

𝜕𝐷

𝜕𝑆
> 0,

𝜕𝐷

𝜕𝑚𝑖
<

0 if ln (
𝑚𝑖𝑑𝑖𝑐1

𝑑1𝑐𝑖
) > 0,

𝜕𝐷

𝜕𝑀𝑗
< 0 if ln (

𝑀𝑗𝐷𝑗𝐶1

𝐷1𝐶𝑗
) > 0. For the special event that 𝑐1𝐷1 = 𝐶1𝑑1, 

𝜕𝐷

𝜕𝑑1
>

0,
𝜕𝐷

𝜕𝐷1
> 0,

𝜕𝐷

𝜕𝑐1
< 0,

𝜕𝐷

𝜕𝐶1
< 0. 

 

Proof. Appendix C. 

 

Proposition 4 shows that rent dissipation 𝐷 decreases in the number 𝑚 or 𝑀 of available efforts, 

and the impacts 𝑑𝑖 or 𝐷𝑗 , since players with more efforts optimize more cost-effectively across 

efforts. Rent dissipation 𝐷 increases in the unit cost 𝑐𝑖 or 𝐶𝑗, and the rent 𝑆. For example when 

𝑑𝑖𝑐1

𝑑1𝑐𝑖
=

𝐷𝑗𝐶1

𝐷1𝐶𝑗
= 1 which causes negative logarithms, 𝐷 increases in the contest intensities 𝑚𝑖 and 

𝑀𝑗. For unbalanced asymmetric contests, where one player is advantaged, Arbatskaya,Mialon 

(2010) also find that additional efforts decrease rent dissipation. However, for balanced contests 

(e.g. when additional efforts are symmetric between players) additional efforts tend to increase 

rent dissipation since they increase the contest’s discriminatory power defined as the sum of the 

contest intensities (equal for both players) across all efforts (both players have equally many 

efforts). Their result follows from multiplication of efforts in the contest success function. They 

thus find that sufficiently symmetric players prefer to eliminate additional efforts, but in 

equilibrium they utilize the additional efforts. 

 

4.3 One effort against 𝑀 efforts 

This section assumes 𝑚 = 𝑀1 = 1,𝑀 ≥ 1, 0 < 𝑚𝑖 ≤ 1, 0 < 𝑀𝑗 < 1, 𝑗 = 2,… ,𝑀,𝑋1 ≥ 0. 

Another common occurrence is that one player chooses or only has available one effort. Assume 

that player 1 chooses one effort 𝑥𝑖. Inserting 𝑀1 = 1, and 𝑚 = 1 replacing subscript 1 with 

subscript 𝑖 for player 1, into (7) and (8), gives 

𝑥𝑖
𝑚𝑖 =

𝑚𝑖
2𝐶1𝑑𝑖𝐷1𝑆

(𝑚𝑖𝐶1𝑑𝑖 + 𝑐𝑖𝐷1𝑥𝑖
1−𝑚𝑖)

2, (14) 
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𝑋1 =
𝑚𝑖𝑐𝑖𝑑𝑖𝐷1𝑥𝑖

1−𝑚𝑖𝑆

(𝑚𝑖𝐶1𝑑𝑖 + 𝑐𝑖𝐷1𝑥𝑖
1−𝑚𝑖)

2 −
1

𝐷1
∑𝐷𝑗 (

𝑀𝑗𝐷𝑗𝐶1

𝐷1𝐶𝑗
)

𝑀𝑗

1−𝑀𝑗
𝑀

𝑗=2

, 𝑋𝑗 = (
𝑀𝑗𝐷𝑗𝐶1

𝐷1𝐶𝑗
)

1
1−𝑀𝑗

, 𝑗 = 2,… ,𝑀 

which simplifies to (10) when 𝑚𝑖 = 1. When 𝑚𝑖 = 1/2, the first equation in (14) becomes a third 

order equation in 𝑥𝑖 which impacts 𝑋1. 

 

Proposition 5. When 𝑚 = 𝑀1 = 1, 0 < 𝑀j < 1, 𝑗 = 2,… ,𝑀;𝑋1 ≥ 0, then 
𝜕𝑥𝑖

𝜕𝑀
=

𝜕𝑥𝑖

𝜕𝐷𝑗
=

𝜕𝑥𝑖

𝜕𝐶𝑗
=

0,
𝜕𝑥𝑖

𝜕𝑆
> 0. 

 

Proof. Follows from (14). 

 

Proposition 5 states that player 1’s single effort 𝑥𝑖 does not depend on the number 𝑀 of efforts 

exerted by player 2. This follows since player 2 optimizes cost-effectively across efforts so that 

𝑀 does not impact player 1. 

 

4.4 𝑚 efforts against one effort 

This section assumes 𝑀 = 𝑚1 = 1,𝑚 ≥ 1, 0 < 𝑀𝑗 ≤ 1, 0 < 𝑚𝑖 < 1, 𝑖 = 2,… ,𝑚,𝑥1 ≥ 0. 

Assume that player 2 chooses one effort 𝑋𝑗. Inserting 𝑚1 = 1, and 𝑀 = 1 replacing subscript 1 

with subscript 𝑗 for player 2, into (7) and (8), gives 

𝑥1 =
𝑀𝑗𝐶𝑗𝑑1𝐷𝑗𝑋𝑗

1−𝑀𝑗𝑆

(𝐶𝑗𝑑1𝑋𝑗
1−𝑀𝑗 +𝑀𝑗𝑐1𝐷𝑗)

2 −
1

𝑑1
∑𝑑𝑖 (

𝑚𝑖𝑑𝑖𝑐1
𝑑1𝑐𝑖

)

𝑚𝑖
1−𝑚𝑖

𝑚

𝑖=2

, 𝑥𝑖 = (
𝑚𝑖𝑑𝑖𝑐1
𝑑1𝑐𝑖

)

1
1−𝑚𝑖

, 𝑖 = 2,… ,𝑚, 

𝑋
𝑗

𝑀𝑗 =
𝑀𝑗
2𝑐1𝑑1𝐷𝑗𝑆

(𝐶𝑗𝑑1𝑋𝑗
1−𝑀𝑗 +𝑀1𝑐1𝐷1)

2 

(15) 

which simplifies to (10) when 𝑀𝑗 = 1. When 𝑀𝑗 = 1/2, the second equation in (15) becomes a 

third order equation in 𝑋𝑗 which impacts 𝑥1. 

 

Proposition 6. When 𝑀 = 𝑚1 = 1, 0 < 𝑚i < 1, 𝑖 = 2,… ,𝑚;𝑥1 ≥ 0, then 
𝜕𝑋𝑗

𝜕𝑚
=

𝜕𝑋𝑗

𝜕𝑑𝑖
=

𝜕𝑋𝑗

𝜕𝑐𝑖
=

0,
𝜕𝑋𝑗

𝜕𝑆
> 0. 

 

Proof. Follows from (15). 
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Analogously to Proposition 5, Proposition 6 states that player 2’s single effort 𝑋𝑗 does not 

depend on the number 𝑚 of efforts exerted by player 1. 

 

4.5 One effort against one effort 

This section assumes 𝑚 = 𝑀 = 1, 𝑢 ≥ 0, 𝑈 ≥ 0. Inserting 𝑚 = 𝑀 = 1 into (6) and solving 

gives 𝑥𝑖 =
𝑚𝑖𝐶𝑗

𝑀𝑗𝑐𝑖
𝑋𝑗 causing (6) to be analytically solvable when 𝑚𝑖 = 𝑀𝑗, which gives 

𝑥𝑖 =
𝐶𝑗

𝑐𝑖
𝑋𝑗 =

𝑀𝑗𝑐𝑖
𝑀𝑗−1𝐶

𝑗

𝑀𝑗𝑑𝑖𝐷𝑗𝑆

(𝐶
𝑗

𝑀𝑗𝑑𝑖 + 𝑐𝑖
𝑀𝑗𝐷𝑗)

2 , 𝑋𝑗 =
𝑀𝑗𝐶𝑗

𝑀𝑗−1𝑐
𝑖

𝑀𝑗𝑑𝑖𝐷𝑗𝑆

(𝐶
𝑗

𝑀𝑗𝑑𝑖 + 𝑐𝑖
𝑀𝑗𝐷𝑗)

2 , 𝐷 =
2𝑀𝑗𝑐𝑖

𝑀𝑗𝐶
𝑗

𝑀𝑗𝑑𝑖𝐷𝑗

(𝐶
𝑗

𝑀𝑗𝑑𝑖 + 𝑐𝑖
𝑀𝑗𝐷𝑗)

2, 

𝑢 =
𝐶
𝑗

𝑀𝑗𝑑𝑖 (𝐶𝑗
𝑀𝑗𝑑𝑖 + (1 −𝑀𝑗)𝑐𝑖

𝑀𝑗𝐷𝑗) 𝑆

(𝐶
𝑗

𝑀𝑗𝑑𝑖 + 𝑐𝑖
𝑀𝑗𝐷𝑗)

2 , 𝑈 =
𝑐
𝑖

𝑀𝑗𝐷𝑗 (𝑐𝑖
𝑀𝑗𝐷𝑗 + (1 −𝑀𝑗)𝐶𝑗

𝑀𝑗𝑑𝑖) 𝑆

(𝐶
𝑗

𝑀𝑗𝑑𝑖 + 𝑐𝑖
𝑀𝑗𝐷𝑗)

2 , 

(16) 

which simplifies to (10), (11), and (12) when 𝑀𝑗 = 𝑖 = 𝑗 = 1. 

 

4.6 Optimal numbers of efforts 

Although the players have 𝑚 and 𝑀 available efforts, it may not be optimal for them to employ 

all 𝑚 and 𝑀 efforts. This section addresses this issue and the issue of 𝑥1 < 0 or 𝑋1 < 0. When 

𝑥1 < 0 or 𝑋1 < 0 in (10), at least one effort 𝑥i or 𝑋j has to be removed. Thus all 𝑤 = ∑ (
𝑚
𝑧
)𝑚

𝑧=1  

combinations of the 𝑚 efforts 𝑥1, … , 𝑥𝑚  should be assessed, matched against all 𝑊 = ∑ (
𝑀
𝑍
)𝑀

𝑍=1  

combinations of the 𝑀 efforts 𝑋1, … , 𝑋𝑀, where (
𝑚
𝑧
) and (

𝑀
𝑍
) are the binomial coefficients for 

the number of ways in which integers 𝑧 and 𝑍 can be selected among 𝑚 and 𝑀, respectively, 

when the orders of the selections are irrelevant. The integers 𝑧 and 𝑍 are counting parameters 

where 1,2,…, 𝑚, or 1,2,…, 𝑀, efforts can be selected among the 𝑚 and 𝑀 efforts. As an example, 

m=4 and M=5 gives w=15 and W=31. In Table 1 player 1 is the row player and player 2 is the 

column player. 
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Table 1 𝑊 ×𝑤 matrix for the players’ efforts 𝑥𝑖(𝜓,Ψ), 𝑖 = 1, . . . , 𝑚, and 𝑋𝑗(𝜓,Ψ), 𝑗 =

2, … ,𝑀, and expected utilities 𝑢(𝜓,Ψ) and 𝑈(𝜓,Ψ). 

  Player 2 

  Ψ = 1 … Ψ = 𝑊 

 

Player 1 
𝜓 = 1    

…  𝑥𝑖(𝜓,Ψ), 𝑋𝑗(𝜓,Ψ), 𝑢(𝜓,Ψ),𝑈(𝜓,Ψ)  

𝜓 = 𝑤    

 

The rows are counted from 𝜓 = 1 to 𝜓 = 𝑤. The columns are counted from Ψ = 1 to Ψ = 𝑊. 

For each cell 𝑥𝑖(𝜓,Ψ), 𝑋𝑗(𝜓,Ψ), 𝑢(𝜓,Ψ), 𝑈(𝜓,Ψ) are calculated. Cells where 𝑥1 < 0 or X1 <

0 are excluded from consideration. The remaining cells, where 𝑥1(𝜓,Ψ) ≥ 0 and 𝑋1(𝜓, Ψ) ≥ 0, 

are used to determine one or several Nash equilibria from which no player prefers to deviate 

unilaterally, i.e. 

𝑢(𝜓∗, Ψ∗) ≥ 𝑢(𝜓,Ψ) ∀ 𝜓 = 1,… ,𝑤 𝑎𝑛𝑑 Ψ = 1,… ,𝑊, 

𝑈(𝜓∗, Ψ∗) ≥ 𝑈(𝜓,Ψ) ∀ 𝜓 = 1,… ,𝑤 𝑎𝑛𝑑 Ψ = 1, … ,𝑊 
(17) 

 

4.7 An example: Maximum two efforts for each player 

This section assumes 𝑚 ≤ 2,𝑀 ≤ 2,𝑚1 = 𝑀1 = 1, 0 < 𝑚2 < 1, 0 < 𝑀2 < 1. Two efforts for 

each player enable illustrating the many instances in Proposition 1 when 𝑥1 and 𝑋1 can be 

negative. Inserting 𝑚 = 2 and 𝑥1 = 0 into (10) and solving with respect to 𝑐2 gives 

𝑐2 =
𝑚2𝑑2𝑐1
𝑑1

(
𝑑2(𝐶1𝑑1 + 𝑐1𝐷1)

2𝐶1𝑑1
2𝐷1𝑆

𝐶1𝑑1
2𝐷1𝑆

)

1−𝑚2
𝑚2

 (18) 

Figure 1 assumes  𝑐1 = 𝐶1 = 𝑑1 = 𝐷1 = 𝑑2 = 𝐷2 = 𝑚1 = 𝑀1 = 1 and 𝑆 = 10 and plots 𝑐2 =

𝐶2 as a function of 𝑚2 = 𝑀2 when 𝑥1 = 𝑋1 = 0. 

 

Figure 1 Regions for 𝑥1 = 𝑋1 ≥ 0 and 𝑥1 = 𝑋1 < 0 separated by plotting 𝑐2 = 𝐶2 as a function 

of 𝑚2 = 𝑀2 when 𝑥1 = 𝑋1 = 0. 
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Above and to the left of the convex curve the unit costs 𝑐2 = 𝐶2 of efforts 𝑥2 and 𝑋2 are 

sufficiently high, and the contest intensities 𝑚2 = 𝑀2 are sufficiently low, making it worth wile 

for the players to exert the efforts 𝑥1 and 𝑋1 additionally. Conversely, below and to the right of 

the convex curve the solution in section 4.2 is invalid. 

 

Aside from 𝑐1 which varies, Figure 2 makes the same assumptions as in Figure 1, i.e. 𝐶1 = 𝑑1 =

𝐷1 = 𝑑2 = 𝐷2 = 𝑚1 = 𝑀1 = 1 and 𝑆 = 10. Additionally, Figure 2 assumes 𝑐2 = 𝐶2 = 1 and 

𝑚2 = 𝑀2 = 0.5. Figure 2 plots the players’ efforts 𝑥1, 𝑥2, 𝑋1, 𝑋2, 𝑒𝑡𝑐. and expected utilities 

𝑢, 𝑈, 𝑒𝑡𝑐.  as functions of player 1’s unit cost 𝑐1 of effort 𝑥1. 

 

Figure 2 Efforts 𝑥1, 𝑥2, 𝑋1, 𝑋2, 𝑒𝑡𝑐. and expected utilities 𝑢, 𝑈, 𝑒𝑡𝑐.  as functions of 𝑐1 when 𝐶1 =

𝑐2 = 𝐶2 = 𝑑1 = 𝐷1 = 𝑑2 = 𝐷2 = 𝑚1 = 𝑀1 = 1, 𝑚2 = 𝑀2 = 0.5, 𝑆 = 10. 

Player 1’s effort 𝑥1 decreases as its unit effort cost 𝑐1 increases (
𝜕𝑥1

𝜕𝑐1
< 0 in Proposition 1) 

eventually reaching zero when 𝑐1 = 2.09. Player 1 cannot effort the high unit effort cost. This 

means that 𝑥1 < 0 when 𝑐1 > 2.09 which invalidates the solution in section 4.2. Conversely, 

player 1’s effort 𝑥2 increases as 𝑐1 increases (
𝜕𝑥2

𝜕𝑐1
> 0 in Proposition 2). Player 1’s expected utility 

𝑢 decreases convexly to 2.14 as 𝑐1 increases to 2.09, while player 2’s expected utility 𝑈 increases 

to 4.83. When 𝑐1 is low, to the advantage of player 1, the first term in the expression for player 

2’s effort 𝑋1 in (10) is low and cannot compensate for the negative second term. With the given 

parameter values 𝑋1 < 0 when 𝑐1 < 0.06, which also invalidates the solution in section 4.2. 

 

Table 2 illustrates the procedure in section 4.6 by presenting a 3 × 3 matrix accounting for each 

player’s three possibilities. That is, player 1 can choose two efforts 𝑥1 and 𝑥2 where 𝑚1 = 1 and 

𝑚2 = 1/2, one effort 𝑥1 where 𝑚1 = 1, or one effort 𝑥2 where 𝑚2 = 1/2. Analogously, player 2 can 
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choose two efforts 𝑋 and 𝑋2 where 𝑀1 = 1 and 𝑀2 = 1/2, one effort 𝑋1 where 𝑀1 = 1, or one 

effort 𝑋2 where 𝑀2 = 1/2. 

 

Table 2 3 × 3 matrix for the players’ efforts 𝑥1, 𝑥2, 𝑋1, 𝑋2, 𝑒𝑡𝑐. and expected utilities 𝑢,𝑈, 𝑒𝑡𝑐. 

  Player 2 

  𝑀 = 2 𝑀 = 1,𝑀1 = 1 𝑀 = 1,𝑀2 = 1/2 

P
la

y
er

 1
 

 

𝑚 = 2 𝑥1, 𝑥2, 𝑋1, 𝑋2, 𝒖, 𝑼 𝑥1, 𝑥2, 𝑋1𝑠, 𝒖, 𝑈1𝑠 𝑥1𝑑𝑠, 𝑥2, 𝑋2𝑠𝑑 , 𝒖𝒅𝒔, 𝑼𝒔𝒅 

𝑚 = 1,𝑚1 = 1 𝑥1𝑠, 𝑋1, 𝑋2, 𝑢1𝑠, 𝑼 𝑥1𝑠, 𝑋1𝑠, 𝑢1𝑠, 𝑈1𝑠 𝑥1𝑠𝑠, 𝑋2𝑠𝑠, 𝑢1𝑠𝑠, 𝑼𝟐𝒔𝒔 
𝑚 = 1,𝑚2 = 1/2 𝑥2𝑠𝑑 , 𝑋1𝑑𝑠, 𝑋2, 𝒖𝒔𝒅, 𝑼𝒅𝒔 𝑥2𝑠𝑠, 𝑋1𝑠𝑠, 𝒖𝟐𝒔𝒔, 𝑈1𝑠𝑠 𝑥2𝑠, 𝑋2𝑠, 𝑢2𝑠, 𝑈2𝑠 

 
𝜕𝑢

𝜕𝑚
> 0 and 

𝜕𝑈

𝜕𝑀
> 0 in Proposition 3 and (11) in section 4.2 imply that each player prefers the 

second effort in addition to the first effort when the first effort has contest intensity 𝑚1 = 𝑀1 = 1 

Thus 𝑢>𝑢1𝑠 and 𝑈 > 𝑈1𝑠 in Figure 2. Each player’s second effort as a single effort is not covered 

by section 4.2 since 𝑚2 = 1/2 or 𝑀2 = 1/2. Player 1’s second effort as a single effort against 

player 2 exerting both efforts is expressed as 𝑥2𝑠𝑑 shown in the lower left cell in Table 2. The first 

subscript “s” means “single effort” by player 1. The second subscript “d” means “double effort” 

by player 2. Player 1’s second effort as a single effort against player 2 exerting only the first effort 

is expressed as 𝑥2𝑠𝑠 shown in the lower middle cell in Table 2. Proposition 5 implies 𝑥2𝑠𝑑 = 𝑥2𝑠𝑠. 

Analogously, Proposition 6 implies 𝑋2𝑠𝑑 = 𝑋2𝑠𝑠 which is player 2’s second effort as a single 

effort against player 1 exerting both efforts or only the first effort. 

 

An expected utility shown in bold in Table 2 means that this utility is largest for at least one value 

of 𝑐1. When both expected utilities are in bold within a given cell in Table 2 for the same value of 

𝑐1, then the two expected utilities are Nash equilibrium expected utilities as defined in (17).  

 

For the intermediate range 0.44 ≤ 𝑐1 ≤ 1.55 in Figure 2, (𝑢, 𝑈) is the equilibrium which means 

that both players choose both efforts. For the upper range 1.55 ≤ 𝑐1 ≤ 2.09, the high unit effort 

cost 𝑐1 makes effort 𝑥1 too costly for player 1 which prefers only the second single effort 𝑥2𝑠𝑑 

with low contest intensity 𝑚2 = 1/2. Player 2 still prefers both efforts causing the equilibrium 

(𝑢𝑠𝑑 , 𝑈𝑑𝑠). Conversely, for the lower range 0.06 ≤ 𝑐1 ≤ 0.44, the low unit effort cost 𝑐1 makes 

player 1 advantaged. Player 2 can no longer compete cost effectively with both efforts, and settles 

for the single second effort 𝑋2𝑠𝑑 with low contest intensity 𝑀2 = 1/2. This causes the equilibrium 

(𝑢𝑑𝑠, 𝑈𝑠𝑑).  
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Between the two dashed vertical lines in Figure 2, 0.66 ≤ 𝑐1 ≤ 1.45, the players collectively 

prefer to exert only their second efforts 𝑥2𝑠 and 𝑋2𝑠 as single efforts causing (𝑢2𝑠, 𝑈2𝑠), in the lower 

right cell in Table 2, which is not an equilibrium. For it to arise coordination is needed. Two 

examples are “burning one’s bridges in war” (Schelling 1980) or mutually agreeing on low 

intensity interaction with 𝑚2 = 𝑀2 = 1/2. 

 

5 Conclusion 

The paper axiomatizes and analyzes a rent seeking model where players exert multiple additive 

efforts. Assuming arbitrarily many efforts for each player, an analytical solution exists when the 

contest intensity for one effort for each player equals one. Then additional efforts enable each 

player to optimize cost effectively across efforts, cutting back on the effort with contest intensity 

equal to one. Adding new efforts eventually causes this latter effort eventually to decrease towards 

zero. Similarly, Epstein,Hefeker (2003) find that if both players use their second of two available 

efforts, they will invest less in their first efforts, assuming that their second efforts reinforce their 

first efforts multiplicatively. Interestingly, both additive and multiplicative efforts cause this 

result. 

 

We find that if one player exerts one effort, this effort does not depend on the number of efforts 

exerted by the other player which optimizes across efforts. Cost optimization across multiple 

additive efforts causes lower rent dissipation and higher expected utilities as the number of efforts 

increases. For symmetric and balanced contests this contrasts with Arbatskaya and Mialon’s 

(2010) finding that additional efforts tend to increase rent dissipation when efforts are 

multiplicative of the Cobb-Douglas type. It also contrasts with Epstein and Hefeker’s (2003) 

finding of increased rent dissipation when the players’ stakes are sufficiently symmetric. 

 

A Nash equilibrium selection method is provided for the event that it may not be optimal for both 

players to exert all their available efforts, accounting for solutions which have to be determined 

numerically. An example is provided with maximum two efforts for each player. Nash equilibria 

are determined where both players choose both efforts, or one player withdraws from its most 

costly effort to exert only the least costly effort. We also illustrate how both players may 

collectively prefer to exclude one of their efforts, though in equilibrium they prefer both efforts. 
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Whereas Arbatskaya,Mialon (2010) as policy implications find that additional socially 

unproductive efforts may unbalance contests causing increased rent dissipation and decreased 

expected utilities, we find that both social and non-social additional efforts decrease rent seeking 

and increase expected utilities due to players’ optimization across efforts. For policy careful 

analysis is required to determine whether multiple efforts are additive or multiplicative. Future 

research should axiomatize and analyze increasingly general functional forms for the contest 

success function and analyze empirically which forms are descriptive. 

 

Appendix A Proof of Lemma 1 

The proof follows Arbatskaya and Mialon’s (2010) template, accounting for Axiom 1 (ii) and (iv) 

being different. Assume 𝑦2𝑘 ∈ ℝ++
1  for at least one 𝑘 ∈ {1,… , 𝐾} and 𝒚−𝟐 ∈ ℝ+

2𝐾, which without 

loss of generality means that player 2 is the player with at least one positive effort. Axiom 1 (ii) 

implies 𝑝2(𝒚) > 0. Axiom 2 implies that 
𝑝1(𝒚)

𝑝2(𝒚)
 does not depend on 𝒚𝟑. Hence Arbatskaya and 

Mialon’s (2010) subsequent equations apply also for the different Axiom 1 (ii) and (iv), causing 

Lemma 1. 

 

Appendix B Nomenclature 

𝑥𝑖 player 1’s effort, 𝑖 = 2,… ,𝑚 

𝑋𝑗 player 2’s effort, , 𝑗 = 2,… ,𝑀 

𝑚 number of efforts for player 1 

𝑀 number of efforts for player 2 

𝑆 rent 

𝑐𝑖 player 1’s unit cost of effort 𝑥𝑖 

𝐶𝑗 player 2’s unit cost of effort 𝑋𝑗 

𝑑𝑖 scaling parameter for player 1’s impact of effort 𝑥𝑖 

𝐷𝑗  scaling parameter for player 2’s impact of effort 𝑋𝑗 

𝑚𝑖 decisiveness or contest intensity for player 1’s effort 𝑥𝑖 

𝑀𝑗 decisiveness or contest intensity for player 2’s effort 𝑋𝑗 

𝑝1 probability that player 1 wins the rent 

𝑝2 probability that player 2 wins the rent 

𝑢 player 1’s expected utility 

𝑈 player 2’s expected utility 
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Appendix C First order derivatives for section 3 

Differentiating (10) gives 

𝜕𝑥1

𝜕𝑚
< 0,

𝜕𝑋1

𝜕𝑀
< 0,

𝜕𝑥1

𝜕𝑑1
=

𝐶1𝐷1(𝑐1𝐷1−𝐶1𝑑1)𝑆

(𝐶1𝑑1+𝑐1𝐷1)3
+

𝑑𝑖

𝑑1
2(1−𝑚𝑖)

(
𝑚𝑖𝑑𝑖𝑐1

𝑑1𝑐𝑖
)

𝑚𝑖
1−𝑚𝑖 ,

𝜕𝑋1

𝜕𝑑1
=

𝑐1𝐷1(𝑐1𝐷1−𝐶1𝑑1)𝑆

(𝐶1𝑑1+𝑐1𝐷1)3
,
𝜕𝑥1

𝜕𝐷1
=

𝐶1𝑑1(𝐶1𝑑1−𝑐1𝐷1)𝑆

(𝐶1𝑑1+𝑐1𝐷1)3
,
𝜕𝑋1

𝜕𝐷1
=

𝑐1𝑑1(𝐶1𝑑1−𝑐1𝐷1)𝑆

(𝐶1𝑑1+𝑐1𝐷1)3
+

𝐷𝑗

𝐷1
2(1−𝑀𝑗)

(
𝑀𝑗𝐷𝑗𝐶1

𝐷1𝐶𝑗
)

𝑀𝑗

1−𝑀𝑗 ,
𝜕𝑥1

𝜕𝑑𝑖
=

−1

𝑑1(1−𝑚𝑖)
(
𝑚𝑖𝑑𝑖𝑐1

𝑑1𝑐𝑖
)

𝑚𝑖
1−𝑚𝑖 < 0,

𝜕𝑋1

𝜕𝑑𝑖
= 0,

𝜕𝑥1

𝜕𝐷𝑗
= 0,

𝜕𝑋1

𝜕𝐷𝑗
=

−1

𝐷1(1−𝑀𝑗)
(
𝑀𝑗𝐷𝑗𝐶1

𝐷1𝐶𝑗
)

𝑀𝑗

1−𝑀𝑗 < 0,
𝜕𝑥1

𝜕𝑐1
=

−2𝐶1𝑑1𝐷1
2𝑆

(𝐶1𝑑1+𝑐1𝐷1)3
−

𝑐𝑖

𝑐1
2(1−𝑚𝑖)

(
𝑚𝑖𝑑𝑖𝑐1

𝑑1𝑐𝑖
)

1

1−𝑚𝑖 < 0,
𝜕𝑋1

𝜕𝑐1
=

𝑑1𝐷1(𝐶1𝑑1−𝑐1𝐷1)𝑆

(𝐶1𝑑1+𝑐1𝐷1)3
,
𝜕𝑥1

𝜕𝐶1
=

𝑑1𝐷1(𝑐1𝐷1−𝐶1𝑑1)𝑆

(𝐶1𝑑1+𝑐1𝐷1)3
,
𝜕𝑋1

𝜕𝐶1
=

−2𝑐1𝑑1
2𝐷1𝑆

(𝐶1𝑑1+𝑐1𝐷1)3
−

𝐶𝑗

𝐶1
2(1−𝑀𝑗)

(
𝑀𝑗𝐷𝑗𝐶1

𝐷1𝐶𝑗
)

1

1−𝑀𝑗 <

0,
𝜕𝑥1

𝜕𝑐𝑖
=

1

𝑐1(1−𝑚𝑖)
(
𝑚𝑖𝑑𝑖𝑐1

𝑑1𝑐𝑖
)

1

1−𝑚𝑖 > 0,
𝜕𝑋1

𝜕𝑐𝑖
= 0,

𝜕𝑥1

𝜕𝐶𝑗
= 0,

𝜕𝑋1

𝜕𝐶𝑗
=

1

𝐶1(1−𝑀𝑗)
(
𝑀𝑗𝐷𝑗𝐶1

𝐷1𝐶𝑗
)

1

1−𝑀𝑗 >

0,
𝜕𝑥1

𝜕𝑚𝑖
=

−𝑑𝑖(1−𝑚𝑖+ln(
𝑚𝑖𝑑𝑖𝑐1
𝑑1𝑐𝑖

))

𝑑1(1−𝑚𝑖)
2 (

𝑚𝑖𝑑𝑖𝑐1

𝑑1𝑐𝑖
)

𝑚𝑖
1−𝑚𝑖 ,

𝜕𝑋1

𝜕𝑚𝑖
= 0,

𝜕𝑥1

𝜕𝑀𝑗
= 0,

𝜕𝑋1

𝜕𝑀𝑗
=

−𝐷𝑗(1−𝑀𝑗+ln(
𝑀𝑗𝐷𝑗𝐶1

𝐷1𝐶𝑗
))

𝐷1(1−𝑀𝑗)
2 (

𝑀𝑗𝐷𝑗𝐶1

𝐷1𝐶𝑗
)

𝑀𝑗

1−𝑀𝑗 ,
𝜕𝑥1

𝜕𝑆
=

𝐶1𝑑1𝐷1

(𝐶1𝑑1+𝑐1𝐷1)2
> 0,

𝜕𝑋1

𝜕𝑆
=

𝑐1𝑑1𝐷1

(𝐶1𝑑1+𝑐1𝐷1)2
> 0. 

(19) 

and 

𝜕𝑥𝑖

𝜕𝑚
= 0,

𝜕𝑋𝑖

𝜕𝑀
= 0,

𝜕𝑥𝑖

𝜕𝑑1
=

−1

𝑑1(1−𝑚𝑖)
(
𝑚𝑖𝑑𝑖𝑐1

𝑑1𝑐𝑖
)

1

1−𝑚𝑖 < 0, 
𝜕𝑋𝑗

𝜕𝑑1
= 0,

𝜕𝑥𝑖

𝜕𝐷1
= 0,

𝜕𝑋𝑗

𝜕𝐷1
=

−1

𝐷1(1−𝑀𝑗)
(
𝑀𝑗𝐷𝑗𝐶1

𝐷1𝐶𝑗
)

1

1−𝑀𝑗 < 0,
𝜕𝑥𝑖

𝜕𝑑𝑖
=

1

𝑑𝑖(1−𝑚𝑖)
(
𝑚𝑖𝑑𝑖𝑐1

𝑑1𝑐𝑖
)

1

1−𝑚𝑖 > 0,
𝜕𝑋𝑗

𝜕𝑑𝑖
= 0,

𝜕𝑥𝑖

𝜕𝐷𝑗
= 0,

𝜕𝑋𝑗

𝜕𝐷𝑗
=

1

𝐷𝑗(1−𝑀𝑗)
(
𝑀𝑗𝐷𝑗𝐶1

𝐷1𝐶𝑗
)

1

1−𝑀𝑗 > 0,
𝜕𝑥𝑖

𝜕𝑐1
=

1

𝑐1(1−𝑚𝑖)
(
𝑚𝑖𝑑𝑖𝑐1

𝑑1𝑐𝑖
)

1

1−𝑚𝑖 > 0,
𝜕𝑋𝑗

𝜕𝑐1
= 0,

𝜕𝑥𝑖

𝜕𝐶1
= 0,

𝜕𝑋𝑗

𝜕𝐶1
=

1

𝐶1(1−𝑀𝑗)
(
𝑀𝑗𝐷𝑗𝐶1

𝐷1𝐶𝑗
)

1

1−𝑀𝑗 > 0,
𝜕𝑥𝑖

𝜕𝑐𝑖
=

−1

𝑐𝑖(1−𝑚𝑖)
(
𝑚𝑖𝑑𝑖𝑐1

𝑑1𝑐𝑖
)

1

1−𝑚𝑖 < 0,
𝜕𝑋𝑗

𝜕𝑐𝑖
= 0,

𝜕𝑥𝑖

𝜕𝐶𝑗
= 0,

𝜕𝑋𝑗

𝜕𝐶𝑗
=

−1

𝐶𝑗(1−𝑀𝑗)
(
𝑀𝑗𝐷𝑗𝐶1

𝐷1𝐶𝑗
)

1

1−𝑀𝑗 < 0,
𝜕𝑥𝑖

𝜕𝑚𝑖
=

(1−𝑚𝑖+𝑚𝑖 ln(
𝑚𝑖𝑑𝑖𝑐1
𝑑1𝑐𝑖

))

𝑚𝑖(1−𝑚𝑖)
2 (

𝑚𝑖𝑑𝑖𝑐1

𝑑1𝑐𝑖
)

1

1−𝑚𝑖 ,
𝜕𝑋𝑗

𝜕𝑚𝑖
= 0,

𝜕𝑥𝑖

𝜕𝑀𝑗
=

0,
𝜕𝑋𝑗

𝜕𝑀𝑗
=

(1−𝑀𝑗+𝑀𝑗 ln(
𝑀𝑗𝐷𝑗𝐶1

𝐷1𝐶𝑗
))

𝑀𝑗(1−𝑀𝑗)
2 (

𝑀𝑗𝐷𝑗𝐶1

𝐷1𝐶𝑗
)

1

1−𝑀𝑗
,
𝜕𝑥𝑖

𝜕𝑆
= 0,

𝜕𝑋𝑗

𝜕𝑆
= 0. 

(20) 

Differentiating (11) gives 
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𝜕𝑈

𝜕𝑚
> 0,

𝜕𝑢

𝜕𝑀
> 0,

𝜕𝑢

𝜕𝑑1
=

2𝑐1𝐶1
2𝑑1𝐷1𝑆

(𝐶1𝑑1+𝑐1𝐷1)3
−

𝑐𝑖

𝑚𝑖𝑑1
(
𝑚𝑖𝑑𝑖𝑐1

𝑑1𝑐𝑖
)

1

1−𝑚𝑖 ,
𝜕𝑈

𝜕𝑑1
=

−2𝑐1
2𝐶1𝐷1

2𝑆

(𝐶1𝑑1+𝑐1𝐷1)3
< 0,

𝜕𝑢

𝜕𝐷1
=

−2𝑐1𝐶1
2𝑑1

2𝑆

(𝐶1𝑑1+𝑐1𝐷1)3
< 0, 

𝜕𝑈

𝜕𝐷1
=

2𝑐1
2𝐶1𝑑1𝐷1𝑆

(𝐶1𝑑1+𝑐1𝐷1)3
−

𝐶𝑗

𝑀𝑗𝐷1
(
𝑀𝑗𝐷𝑗𝐶1

𝐷1𝐶𝑗
)

1

1−𝑀𝑗
,
𝜕𝑢

𝜕𝑑𝑖
=

𝑐1

𝑑1
(
𝑚𝑖𝑑𝑖𝑐1

𝑑1𝑐𝑖
)

𝑚𝑖
1−𝑚𝑖 >

0,
𝜕𝑈

𝜕𝑑𝑖
= 0,

𝜕𝑢

𝜕𝐷𝑗
= 0,

𝜕𝑈

𝜕𝐷𝑗
=

𝐶1

𝐷1
(
𝑀𝑗𝐷𝑗𝐶1

𝐷1𝐶𝑗
)

𝑀𝑗

1−𝑀𝑗 > 0,
𝜕𝑢

𝜕𝑐1
=

−2𝐶1
2𝑑1

2𝐷1𝑆

(𝐶1𝑑1+𝑐1𝐷1)3
+

𝑑𝑖

𝑑1
(
𝑚𝑖𝑑𝑖𝑐1

𝑑1𝑐𝑖
)

𝑚𝑖
1−𝑚𝑖 ,

𝜕𝑈

𝜕𝑐1
=

2𝑐1𝐶1𝑑1𝐷1
2𝑆

(𝐶1𝑑1+𝑐1𝐷1)3
> 0,

𝜕𝑢

𝜕𝐶1
=

2𝑐1𝐶1𝑑1
2𝐷1𝑆

(𝐶1𝑑1+𝑐1𝐷1)3
> 0, 

𝜕𝑈

𝜕𝐶1
=

−2𝑐1
2𝑑1𝐷1

2𝑆

(𝐶1𝑑1+𝑐1𝐷1)3
+

𝐷𝑗

𝐷1
(
𝑀𝑗𝐷𝑗𝐶1

𝐷1𝐶𝑗
)

𝑀𝑗

1−𝑀𝑗
,
𝜕𝑢

𝜕𝑐𝑖
= −(

𝑚𝑖𝑑𝑖𝑐1

𝑑1𝑐𝑖
)

1

1−𝑚𝑖 < 0,
𝜕𝑈

𝜕𝑐𝑖
= 0,

𝜕𝑢

𝜕𝐶𝑗
= 0,

𝜕𝑈

𝜕𝐶𝑗
= −(

𝑀𝑗𝐷𝑗𝐶1

𝐷1𝐶𝑗
)

1

1−𝑀𝑗 <

0,
𝜕𝑢

𝜕𝑚𝑖
=

𝑐𝑖 ln(
𝑚𝑖𝑑𝑖𝑐1
𝑑1𝑐𝑖

)

𝑚𝑖(1−𝑚𝑖)
(
𝑚𝑖𝑑𝑖𝑐1

𝑑1𝑐𝑖
)

1

1−𝑚𝑖 ,
𝜕𝑈

𝜕𝑚𝑖
= 0,

𝜕𝑢

𝜕𝑀𝑗
= 0,

𝜕𝑈

𝜕𝑀𝑗
=

𝐶𝑗 ln(
𝑀𝑗𝐷𝑗𝐶1

𝐷1𝐶𝑗
)

𝑀𝑗(1−𝑀𝑗)
(
𝑀𝑗𝐷𝑗𝐶1

𝐷1𝐶𝑗
)

1

1−𝑀𝑗
, 

 
𝜕𝑢

𝜕𝑆
=

𝐶1
2𝑑1

2

(𝐶1𝑑1+𝑐1𝐷1)2
> 0,

𝜕𝑈

𝜕𝑆
=

𝑐1
2𝐷1

2

(𝐶1𝑑1+𝑐1𝐷1)2
> 0. 

 

(21) 

Differentiating (12) gives 

𝜕𝐷

𝜕𝑚
< 0,

𝜕𝐷

𝜕𝑀
< 0,

𝜕𝐷

𝜕𝑑1
=

2𝑐1𝐶1𝐷1(𝑐1𝐷1−𝐶1𝑑1)

(𝐶1𝑑1+𝑐1𝐷1)3
+
1

𝑆
∑

𝑐𝑖

𝑑1𝑚𝑖
(
𝑚𝑖𝑑𝑖𝑐1

𝑑1𝑐𝑖
)

1

1−𝑚𝑖𝑚
𝑖=2 ,

𝜕𝐷

𝜕𝐷1
=

2𝑐1𝐶1𝑑1(𝐶1𝑑1−𝑐1𝐷1)

(𝐶1𝑑1+𝑐1𝐷1)3
+
1

𝑆
∑

𝐶𝑗

𝐷1𝑀𝑗
(
𝑀𝑗𝐷𝑗𝐶1

𝐷1𝐶𝑗
)

1

1−𝑀𝑗𝑀
𝑗=2 ,

𝜕𝐷

𝜕𝑑𝑖
= −

𝑐1

𝑑1𝑆
(
𝑚𝑖𝑑𝑖𝑐1

𝑑1𝑐𝑖
)

𝑚𝑖
1−𝑚𝑖 < 0, 

𝜕𝐷

𝜕𝐷𝑗
=

−
𝐶1

𝐷1𝑆
(
𝑀𝑗𝐷𝑗𝐶1

𝐷1𝐶𝑗
)

𝑀𝑗

1−𝑀𝑗 < 0,
𝜕𝐷

𝜕𝑐1
=

2𝐶1𝑑1𝐷1(𝐶1𝑑1−𝑐1𝐷1)

(𝐶1𝑑1+𝑐1𝐷1)3
−

𝑑𝑖

𝑑1𝑆
(
𝑚𝑖𝑑𝑖𝑐1

𝑑1𝑐𝑖
)

𝑚𝑖
1−𝑚𝑖, 

𝜕𝐷

𝜕𝐶1
=

2𝑐1𝑑1𝐷1(𝑐1𝐷1−𝐶1𝑑1)

(𝐶1𝑑1+𝑐1𝐷1)3
−

𝐷𝑗

𝐷1𝑆
(
𝑀𝑗𝐷𝑗𝐶1

𝐷1𝐶𝑗
)

𝑀𝑗

1−𝑀𝑗
,
𝜕𝐷

𝜕𝑐𝑖
=

1

𝑆
(
𝑚𝑖𝑑𝑖𝑐1

𝑑1𝑐𝑖
)

1

1−𝑚𝑖 > 0,
𝜕𝐷

𝜕𝐶𝑗
=

1

𝑆
(
𝑀𝑗𝐷𝑗𝐶1

𝐷1𝐶𝑗
)

1

1−𝑀𝑗 >

0,
𝜕𝐷

𝜕𝑚𝑖
= −

𝑐𝑖 ln(
𝑚𝑖𝑑𝑖𝑐1
𝑑1𝑐𝑖

)

𝑚𝑖(1−𝑚𝑖)𝑆
(
𝑚𝑖𝑑𝑖𝑐1

𝑑1𝑐𝑖
)

1

1−𝑚𝑖 ,
𝜕𝐷

𝜕𝑀𝑗
= −

𝐶𝑗 ln(
𝑀𝑗𝐷𝑗𝐶1

𝐷1𝐶𝑗
)

𝑀𝑗(1−𝑀𝑗)
(
𝑀𝑗𝐷𝑗𝐶1

𝐷1𝐶𝑗
)

1

1−𝑀𝑗
, 
𝜕𝐷

𝜕𝑆
=

1

𝑆2
(∑ (

1

𝑚𝑖
− 1) 𝑐𝑖 (

𝑚𝑖𝑑𝑖𝑐1

𝑑1𝑐𝑖
)

1

1−𝑚𝑖
+ ∑ (

1

𝑀𝑗

− 1) 𝐶𝑗 (
𝑀𝑗𝐷𝑗𝐶1

𝐷1𝐶𝑗
)

1

1−𝑀𝑗𝑀
𝑗=2

𝑚
𝑖=2 ) > 0. 

 

(22) 

References 

Amegashie, J.A., Runkel, M.: Sabotaging potential rivals. Social Choice and Welfare 28(1), 143-

162 (2007). doi:10.1007/s00355-006-0157-4 

Arbatskaya, M., Mialon, H.M.: Multi-activity contests. Economic Theory 43(1), 23-43 (2010). 

doi:10.1007/s00199-008-0424-y 



 23 

Arbatskaya, M., Mialon, H.M.: Dynamic Multi‐Activity Contests. Scandinavian Journal of 

Economics 114(2), 520-538 (2012). doi:10.1111/j.1467-9442.2012.01695.x 

Chen, K.P.: Sabotage in promotion tournaments. Journal of Law Economics & Organization 

19(1), 119-140 (2003). doi:10.1093/jleo/19.1.119 

Clark, D., Riis, C.: Contest success functions: an extension. Economic Theory 11(1), 201-204 

(1998). doi:10.1007/s001990050184 

Congleton, R.D., Hillman, A.L., Konrad, K.A. (eds.): 40 Years of Research on Rent Seeking. 

Volume 2. Applications: Rent Seeking in Practice. Berlin and Heidelberg: Springer, 

(2008) 

Epstein, G.S., Hefeker, C.: Lobbying contests with alternative instruments. Economics of 

Governance 4(1), 81-89 (2003). doi:10.1007/s101010200049 

Hausken, K.: Production and conflict models versus rent-seeking models. Public Choice 123(1-

2), 59-93 (2005). doi:10.1007/s11127-005-1717-3 

Hirshleifer, J.: Anarchy and its breakdown. Journal of Political Economy 103(1), 26-52 (1995). 

doi:10.1086/261974 

Konrad, K.A.: Sabotage in rent-seeking contests. Journal of Law Economics & Organization 

16(1), 155-165 (2000). doi:10.1093/jleo/16.1.155 

Krakel, M.: Helping and Sabotaging in Tournaments. International Game Theory Review 7(2), 

211-228 (2005). doi:http://www.worldscientific.com/loi/igtr 

Krueger, A.O.: The Political Economy of the Rent-Seeking Society. Am. Econ. Rev. 64(3), 291-

303 (1974). doi:http://www.aeaweb.org/aer/ 

Nitzan, S.: Modelling rent-seeking contests. European Journal of Political Economy 10(1), 41-60 

(1994). doi:10.1016/0176-2680(94)90061-2 

Posner, R.A.: The Social Costs of Monopoly and Regulation. Journal of Political Economy 83(4), 

807-827 (1975). 

doi:http://www.jstor.org/action/showPublication?journalCode=jpoliecon 

Salop, S.C., Scheffman, D.T.: Raising Rivals' Costs. Am. Econ. Rev. 73(2), 267-271 (1983). 

doi:http://www.aeaweb.org/aer/ 

Schelling, T.C.: The strategy of conflict. Harvard University Press, Cambridge, Mass (1980) 

Skaperdas, S.: Contest success functions. Economic Theory 7(2), 283-290 (1996). 

doi:10.1007/s001990050053 

http://www.worldscientific.com/loi/igtr
http://www.aeaweb.org/aer/
http://www.jstor.org/action/showPublication?journalCode=jpoliecon
http://www.aeaweb.org/aer/


 24 

Skaperdas, S., Syropoulos, C.: The Distribution of Income in the Presence of Appropriative 

Activities. Economica 64(253), 101-117 (1997). 

doi:http://onlinelibrary.wiley.com/journal/10.1111/%28ISSN%291468-0335/issues 

Tullock, G.: Efficient Rent-Seeking. In: Buchanan, J.M., Tollison, R.D., Tullock, G. (eds.) 

Toward a Theory of the Rent-Seeking Society. pp. 97-112. Texas A. & M. University 

Press, College Station (1980) 

 

http://onlinelibrary.wiley.com/journal/10.1111/%28ISSN%291468-0335/issues

