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Abstract 
We investigate the potential for statistical forecasting of aggregate oil and gas investment on the 

Norwegian Continental Shelf (NCS). A unique and detailed dataset containing data from 109 different 

fields on the NCS between 1970 and 2015 was employed. A set of 1080 autoregressive distributed lag 

models are evaluated pseudo out-of-sample and tested for data mining by utilizing a Diebold-Mariano 

hypothesis test and the model confidence set procedure by Hansen and Lunde (2011). The main results 

are as follows. First, we find that it is indeed possible but challenging to outperform the parsimonious 

random walk benchmark in an out-of-sample environment. Second, lags of investment growth, crude 

oil price growth and realized volatility is found to be adequate predictors for the investment growth. 

Finally, there is a clear benefit from re-estimating the models coefficient at every step.  

 

 

Keywords: Investment, oil and gas sector, Norwegian Continental Shelf, pseudo out-of-sample 

forecasting 

Jel. class.no.:  C31; C52; D22; D92; E17; E22; E27; G31 

  

                                                           
1 Thanks are due to Anders Toft at the Norwegian Petroleum Directorate for useful comments and suggestions.  

mailto:petter.osmundsen@uis.no


2 
 

1. Introduction 
This paper attempts to forecast future aggregate oil and gas investments on the Norwegian 

Continental Shelf (NCS). The ability to predict future movements in aggregate investment might prove 

useful for the government in their decision-making. The petroleum sector exerts a prevalent influence 

over the Norwegian economy. Thus, cyclicalities in oil and gas investments could be a denominator of 

the overall domestic business cycle. From a governmental point of view, it is of great interest to employ 

measures to smoothen the business cycles; however, the timing of such measures is crucial.  For 

instance, implementing measures aimed at halting a business boom might prove ill-advised if the 

economy on its own accord is about to revert into a downturn. As such, providing a model capable of 

forecasting future movements in investment could prove helpful in the timing of measures aimed at 

smoothing the cycles. In Norway, oil investment predictions are also necessary for budgetary purposes 

as the Norwegian state has a direct interest in many of the fields, via the fully state owned company 

Petoro.  

Previous research in the literature has been dedicated to understand and forecast future investments, 

especially corporate investments. However, investments in the oil and gas sector exhibits several 

important characteristics (Bhattacharyya, 2011) that set them apart from other types of investments. 

Capital intensiveness: petroleum projects tend to be extensively capital intensive. Asset specificity: 

assets utilized in the projects tend to be idiosyncratic and thus have little alternative usage, which 

consequently increases the risk of the project. Long-life of assets: the projects have a long duration 

and as the project will operate long into the future, it becomes challenging to forecast the associated 

costs and benefits. Long gestation period: oil and gas projects tends to require a longer period to 

execute thus making them more sensitive to the business environment. Thus, it can be argued that the 

presence of these characteristics warrants an investigation of the forecastability of investments from 

the oil and gas sector specifically. 

There are several broad approaches to forecasting. As pointed out by Hamilton (2009), predicting the 

future is frequently based on a statistical approach, economic theory or inspecting the fundamental 

denominators of supply and demand. The various approaches are often regarded as substitutes or 

competing methodologies serving the same purpose. However, it might be more prudent to consider 

these as complementary. Arguably, several forecasting techniques should be combined to achieve 

superior insight. Nevertheless, while valuable insight could potentially be gained from all 

methodologies, this study will primarily pursue the statistical approach in the sense that the future is 

deterministically derived from correlations and relationships gleaned from historical data by applying 

times series models. Time series models are typically considered to be atheoretical. That is, the 

estimated coefficient in these models are used to forecast the variables of interest, but unlike typical 

cross-sectional studies, we do not attempt to assign a causal interpretation. The selection of variables 

or predictors in the time series model will be based on expert knowledge or theoretical considerations, 

but the overall model itself is not necessarily indicative of any causal relationships among the 

predictors and the variable to be predicted. With this as a point of departure, there are several issues 

of paramount contention in the choice of methodology for statistical forecasting and forecast 

evaluation.  

First, a potential issue is whether to forecast the aggregate investment or aggregate the forecasts of 

the components of investment. From a theoretical perspective, the latter might yield superior forecast 

as data on a disaggregate level could be more informative. On the other hand, as the level of 

disaggregation increases the amount of noise is likely to increase. Consequently, whether to use the 

former or latter approach to forecasting the aggregate is an empirical matter (Hendry and Hubrich, 

2012; Grunfeld and Griliches 1960; Kohn, 1982; Giacomini and Granger, 2004).  
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Second, the measure of the forecast accuracy is a prevalent issue. Typically, a model’s forecasting 

accuracy is based on either economic or statistical loss functions. The former utilizes the end user’s 

actual utility function, while the latter measures forecast accuracy as the weighted sum of the forecast 

error (𝑒𝑡), i.e. the difference between the observed (𝑦𝑡) and predicted (�̂�𝑡) values of the variable of 

interest, 𝑒𝑡 = 𝐿(𝑦𝑡 − �̂�𝑡). An example of the former would be a trader on the stock exchange deciding 

to sell or buy a particular share based on a model’s forecast – the profit gained by using this strategy 

and model would be an economic loss function. An economic loss function is widely considered to be 

the best measure of a model forecast accuracy as it is directly contingent on the end user’s goal. 

However, the downside is that explicit knowledge about the user’s utility function is required, which is 

seldom the case, and that a model’s accuracy becomes dependent on the intended usage. Just as 

beauty is in the eye of the beholder, so is the model’s forecast accuracy. In practice, it is easier to utilize 

a set of statistical loss functions, which attempt to emulate the unobservable utility function in a more 

simplified manner.  The measure of the forecast accuracy becomes more generalized, but at the 

expense of potentially becoming arbitrary. For instance, an example voiced by Taleb (2007) is that 

using Value at Risk (VaR) that is correctly predicting the loss on a portfolio 95 percent of the time is 

similar to deciding to cross a river that on average is a meter deep. In other words, a blind reliance on 

statistical loss functions could be disastrous.   

Third, the issue of how to restrict the information set used to estimate the coefficients in the time 

series model is less contested, but still a paramount issue. Depending on the information set, forecasts 

are either made in-sample or out-of-sample, where the latter can be further disaggregated in to ex 

ante or ex post. In-sample indicates that the same sample of data is both used to estimate the model 

and to perform evaluation of the models forecast accuracy. From a practical point of view, in-sample 

is relatively fast and easy to implement compared to out-of-sample. However, the in-sample approach 

is not realistic in the sense that we essentially need to know the future in order to predict the same 

future. The ever increasing ability of our statistical models to fit the observed data is paradoxically a 

problem in the forecast literature. Following the idea behind Wold’s decomposition theorem, a 

stationary variable can be decomposed into two components, a deterministic part and a stochastic 

part. When utilizing the in-sample approach, models that capture the random noise and nuisance of 

the past is rewarded. This is problematic as this idiosyncratic noise is of little importance and is unlikely 

to repeat itself in future.  More formally, by allowing the sample to be both used for estimation and 

evaluation the problem of overfitting and data-mining becomes more prevalent. In-short, the in-

sample approach tends to understate the forecasting errors and to favour models that in practice is 

sub-optimal. For these reasons, the well-established consensus in the literature is that the forecast 

accuracy of any given models ought to be assessed through out-of-sample evaluation rather than in-

sample testing.  

Perhaps the most prevalent issue in statistical forecasting is the selection of predictors. As a point of 

departure, the underlying motivation for undertaking investments is to enable the realization of 

benefits that outweigh the costs after controlling for factors such as risk and the value of time. What 

constitutes a benefit is open to interpretation, but within the context of oil and gas projects, the most 

obvious goal of a project is profit. Thus, anything affecting the expected time and risk adjusted profit 

of the projects is a potential predictor of aggregate oil and gas investment. However, in this paper we 

will investigate the effect of three different exogenous predictors on the aggregate investments, 

specifically the crude oil price (Brent), the realized volatility of the crude oil price and the USD/NOK 

exchange rate.    

Thus, summing up, the aim of this paper is twofold. First, we attempt to identify the statistical 

properties of oil and gas investments on the NCS. Second, we investigate the feasibility of the statistical 
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approach for forecasting future aggregate oil and gas investment in Norway with an ex post (pseudo) 

out-of-sample accuracy evaluation.  

There are several studies addressing cost and activity issues at the NCS, but they are focusing on 

causalities, not forecasting. Exploration activity is analysed by Mohn and Osmundsen, 2008; 2011 and 

Mohn 2008). A report written on behalf of the Norwegian Petroleum Directorate (2013), considers 

cost overruns of 5 megaprojects on the Norwegian continental shelf.  The findings in the report were 

compared to NOU (1999), a similar report produced by the Investment Committee in 1998. Drilling 

efficiency at the NCS was analysed in Osmundsen et al. (2010, 2012). Osmundsen et al. (2015) analyse 

the effect of taxation on NCS investment. Investments on the UK shelf and the effect on production is 

addressed in Kemp and Kasim (20013).  

The reminder of this paper is structured as follows. Section 2 displays the components of investments 

and shows how the aggregate oil and gas investment on the NCS is computed. In section 3, we 

investigate the statistical properties of the aggregate investment and in Section 4 we analyse the 

aggregate investment growth and the predictors. Section 5 discusses and presents the utilized 

methodology for forecasting and evaluating aggregate investment growth. Further, in section 6 the 

results from the ex ante out-of-sample forecast evaluation of the considered models is presented and 

discussed. Finally, section 7 draws conclusions.  

 

2. Aggregation of investment 
To analyse aggregate oil and gas investments on the NCS we utilize a unique and detailed dataset 

extracted from the Norwegian Petroleum Directorate (NPD). Aggregate investment is here computed 

as the inflation adjusted aggregate sum of twelve different time series (see Table 1), based on 109 

development projects, pertinent to oil and gas production on the NCS between 1970 and 2015. The 

consumer price index from Statistics Norway was used to adjust investments to year 2015 NOK values. 

The aggregate investment of the development projects consists of investment related to wells, 

pipelines, offshore installations and onshore facilitates. 

While the aggregate investment is the variable of primary interest, it is possible that it will exhibit 

characteristics that differ from its base component. Furthermore, the twelve different investment 

types used as a basis for the aggregate it likely to possess a great deal of heterogeneity, both in 

behaviour and data availability. Thus, a compelling argument can be made that it is necessary to 

understand the underlying drivers or determinates of the base component before understanding the 

aggregate. However, due to differing data consistency it becomes challenging to evaluate this data 

adequately beyond a descriptive level. 

Based on the twelve time series for investment on the NCS, we aggregate the variables into broader 

subcategories in accordance with the type of investment. The considered subcategories are wells, 

pipelines, offshore installations and onshore facilities. Figure 1 compares the aggregate investment to 

the four subcategories. As observed, the aggregate investment was initiated with less than one billion 

in 1970 before experiencing an oscillating behaviour around an upward and stable trend throughout 

the sample period until 2004. With an aggregate investment of 57 billion NOK in 2004, the positive 

trend appears to intensify as the average yearly increase in investment shifted from 1.66 bn to 7.56 

bn. Between 1970 and 1989 aggregate investment appears to exclusively consist of investment in 

offshore facilities, only from 1990 does the other subcategories appear to enter.  While investment in 

offshore facilities diverge, from the aggregate investment after 1990, both variables appear to remain 
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predominantly collinear. Investment in wells appears to mostly trend upwards with little fluctuation, 

whereas pipelines and onshore facilities appear to be relatively stationary. 

 

Table 1: List of aggregate investment components 
This table shows subcategories of investment, the twelve base components of the aggregate oil and 
gas investment and their respective data consistency. Number of panel data observations (N), 
number of fields (Fields) reporting on the data, and sample period range (Time) of the data is 
reported. All data was extracted from the Norwegian Petroleum Directorate. 

Subcategory: Component: N/Fields/Time 

Investment in wells 
New non mobile units  656/43/1990-2015 
New mobile units 878/84/1990-2015 
Not classified 428/66/2006-2015 

   

Investment in offshore 
installations 

Modifications on existing installations 1110/85/1970-2015 
New bottom conditions and other 398/50/1992-2015 
New movable units 193/26/1995-2015 
New cargo and storage 13/4/1995-2000 
Subsea installations 598/71/1995-2015 
Other constructions 350/67/2007-2015 

   

Investment in pipelines 
Offshore pipelines 540/72/1990-2015 
Onshore pipelines 16/16/2015-2015 

   
Investment in onshore facilities Facilities  81/14/1998-2015 

 

 

Figure 1: Investment on the NCS 
This figure shows the inflations adjusted investment in billion NOK on the Norwegian Continental 
Shelf for the oil and gas sector between 1970 and 2015. Investment is displayed both on an 
aggregate and disaggregate level. All data was provided by the Norwegian Petroleum Directory.   

 

0
5

0
1

0
0

1
5
0

2
0
0

In
v
e
s
tm

e
n

t 
(b

n
 N

O
K

)

1970 1980 1990 2000 2010 2020

Total Wells Facility (Offshore) Pipelines Facility (Onshore)



6 
 

Figure 2 shows the four subcategories of the total investment and their respective base component. 

Subfigure (a) displays the development in investment related to offshore installations. As revealed, 

after a spike in the 70s, modifications of existing infrastructure has steadily increased from a relatively 

low level in 1993 to 2013, before seemingly plunging again. Investment in new offshore installations 

exhibits a far more volatile and erratic behaviour with a non-obvious pattern. Subfigure (b) addresses 

investment related to wells. These types of investments appears to predominantly exhibit an upward 

sloping trend. Investment in pipelines, see subfigure (c), appears to spike in 1994 and 2012 while 

otherwise remaining on a lower and more stable level. Furthermore, investment in pipelines appears 

to be predominantly offshore rather than onshore, which is to be expected. Finally, subfigure (d) shows 

the development of investment in onshore facilities. With the exception of a few larger spikes, this 

type of investment appears to follow no particular discernible trend.  

 

Figure 2: Disaggregated investment on the NCS 
This figure shows the inflations adjusted investment in billion NOK on the Norwegian Continental 
Shelf for the oil and gas sector between 1970 and 2015. Subfigure (a) shows investment in offshore 
installations, (b) investment in wells, (c) investment in pipelines both on- and offshore, and (d) 
onshore facilities. All data was provided by the Norwegian Petroleum Directory.   
 

(a) Offshore installations (b) Wells 

  
(c) Pipelines (d) Onshore facilities 

  
 

Figure 3 shows the percentage contribution from the four subcategories (wells, pipelines, offshore 

installations and onshore facilities) to the aggregate investment in the oil and gas sector on the NCS. 

Prior to 1989 investment were seemingly exclusively confined to offshore installations. This is likely 
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due to a more crude level of details in the records. As such, it makes little sense to consider the 

investment disaggregated to the subcategories for the whole sample period in later econometric 

analysis. Nevertheless, considering the sample period from 1990 to 2015, the relative contribution of 

the subcategories appears to change over time, were offshore installations and wells are the most 

important. In comparison, pipelines and onshore facilities have a minuscule effect on the aggregate 

investment. 

 

Figure 3: Components of oil and gas investments 
This figure shows the percentage of each sub categories of the aggregate oil and gas investment on 
the Norwegian Continental Shelf between 1970 and 2015. All data was provided by the Norwegian 
Petroleum Directory. 

 
 

3. Statistical characteristics of investments  
While the aggregate investment is the variable of primary concern, it is paramount to acknowledge 

that the oil and gas investment on the NCS is derived from fields operated by companies. Although the 

properties of a company’s investment behaviour could differ from the aggregate, it might be insightful 

to address the statistical properties of investment disaggregated down to fields. 

Figure 4 (a) shows the distribution of the total investment across 109 oil and gas fields on the NCS 

between 1971 and 2015. As observed, the kernel density plot of the distribution appears to resemble 

a lognormal distribution. Figure 4 (b) compares the density-quantile function (the density function of 

investment computed through the quantile function) with the theoretical lognormal distribution with 

parameters derived from the sample. Based on visual inspection, the fit appears to be quite adequate. 

An implication of these observations is that we can expect the data to exhibit similarities to the Pareto 

principle, i.e. the 80/20 rule. Conferring with the data, 20 percent of the oil and gas fields accounts for 

60.58 percent of the aggregate investment on the NCS. Consequently, not all fields are equally 

important to the aggregate investment. If a qualitative approach were to be undertaken in the pursuit 

of forecasting aggregate investment it might be advisable to not spend an uniform amount of effort 

on analysing the different fields.  
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Figure 4: Total investment in oil and gas fields 
This figure shows the distribution of the total inflation-adjusted investment for 109 oil and gas fields 
aggregate over time (1971-2015) on the NCS. The distribution is approximated through a histogram 
and an Epanechnikov kernel density plot.  

(a) Distribution (b) Distribution fit 

  
 

 

Common knowledge would suggest that the dispersion of investments throughout the life cycle of the 

oil and gas field does not follow a uniform distribution. Rather, it seems more plausible to expect 

investment to be predominantly clustered around the early stages of the investment period. Figure 5 

(a) illustrates how the average investment throughout each year of the fields life cycle is dispersed. As 

discerned from the graph, contrary to ex ante expectations, investments are oscillating around a stable 

level before increasing significantly. However, this observation comes with some caveats.  First, there 

appears to be a great deal of heterogeneity in the absolute investment as the standard deviation 

intervals are relatively large. Second, the duration or total lifetime of the fields differ, causing the figure 

to become incrementally anecdotal as the considered year increases. A more appropriate depiction of 

the investment behaviour can be observed in Figure 5 (b). Here each field’s yearly investment is relative 

to the fields total observed lifetime investment. Conforming to prior beliefs, the normalized 

investment diffusion appears to build up quickly before geometrically declining to a comparably lower 

and more stable level with the occasional spike. This characteristic of a field’s investment dispersion 

might be pivotal for forecasting investment disaggregated down to fields, but not necessarily when 

considering the aggregate investment on the NCS. If the projects are of similar size and if the initiation 

of new projects are uniformly distributed throughout the sample period, then the initial spike in the in 

life cycle will be averaged out. However, these assumptions might not hold in this dataset. First, as 

revealed in Figure 4 (a), the first assumption appear to be violated as a relatively small subsample of 

the fields contributes a disproportionate amount of the total investment. Second, it is possible that 

the oil and gas companies’ investment decisions are correlated given that their judgment could be 

affected by the business cycle. For instance, if the decision to either initiate or postpone a project is 

significantly driven by the oil price, then periods of low prices will cause an investment drought and 

conversely an investment boom when prices are high. Under this mechanism, the initial spike in the 

investment dispersion will amplify the effect on the aggregate investment from the postulated 

cascading behaviour of the oil and gas companies.   
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Figure 5: Investment in fields across life time 
This figure shows field investment across the life cycle. Subfigure (a) displays the average 
investment, and associated standard deviation interval, in oil and gas fields on the NCS across 
throughout the fields’ life cycle. As the duration of the various fields differ, the number of 
observations utilized is reported. Subfigure (b) substitutes the average investment with the average 
investment normalized by the fields total investment size throughout the whole cycle.  

(a) Investment (b) Normalized investment 

  
 

As shown in Figure 6, the number of new fields on the NCS follows a fluctuating pattern, which does 

not appear to be uniform. 

Figure 6: Oil and gas fields 
This figure shows the number of active fields on the NCS and the number 
of yearly additions of new fields.  

 
 

      

 

4. Empirical analysis of key variables 
Table 2 and 3 present results from the unit roots test for the dataset both under panel data structure 

and under cross-sectional aggregation.  
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Table 2 Unit root test result cross-sectionally aggregate data 
This table shows the unit root test results for the cost overrun and surprise variables. The Fisher unit root test 
by Maddala and Wu (1999) with both the augmented Dickey-Fuller and Phillips-Perron specification. The tests 
were considered both with and without a deterministic trend. The null hypothesis under both the ADF and PP 
test states that a unit root is present in the data. 

Variable 
Fisher (ADF) Fisher (PP) 

n 
Without trend With trend Without trend With trend 

Totaleinvesteringer 0.00 0.00 0.00 0.00 1643 

Aggr_Brønn 0.00 0.00 0.00 0.00 1117 

Aggr_Innr 0.00 0.00 0.00 0.00 1186 

Aggr_Rør 0.00 0.00 0.00 0.00 284 

Aggr_Landanl 0.00 0.00 0.73 0.00 45 

Inv_Brønn_Nye_Fast 0.00 0.00 0.00 0.00 500 

Inv_Brønn_Nye_FlyttbInnr 0.00 0.00 0.00 0.00 605 

Inv_Brønn_Ufordelt 
0.00 
 0.77 0.00 0.00 273 

Inv_Innr_Eksist_Modifik 0.00 0.00 0.00 0.00 928 

Inv_Innr_Nye_BunnfOgAndr 0.00 0.00 0.00 0.00 197 

Inv_Innr_Nye_Flyttb 0.00 0.16 0.00 0.00 96 

Inv_Innr_Nye_LastLager 1.00 1.00 0.48 0.42 8 

Inv_Innr_Nye_UndervAnnl 0.00 0.00 0.00 0.00 361 

Inv_Innr_Utbygg_Andre 0.00 0.00 0.00 0.00 220 

Inv_Landanl 0.00 0.00 0.73 0.00 45 

Inv_Rør 0.00 0.52 0.00 0.00 283 

Inv_Rør_Landanl 1.00 1.00 1.00 1.00 16 

 

As revealed by the Fisher panel data unit root test, the null hypothesis of non-stationarity is 

predominantly rejected by both the augmented Dickey-Fuller (ADF) and Phillips-Perron specification. 

However, when the data is subjected to cross-sectional aggregation, changing the data structure from 

panel to time series, the null is chiefly not rejected. Given this paper primary interest in the aggregate 

investment, two approaches are immediately apparent – either apply first difference (if the data is 

integrated of order one) to make aggregate investment stationary or employ an error correction model 

(ECM) if  investment is cointegrated with our explanatory variables (See table 4 for a list of evaluated 

predictors).   

Table 3: Unit root test result cross-sectional aggregated data 
This table shows the unitroot test results for the economic activity variables. Augmented Dickey-
Fuller and Phillips-Perron tests were utilized both with and without a deterministic trend. The null 
hypothesis under both the ADF and PP test states that a unit root is present in the data. 

Variable 
Augmented Dickey-Fuller Phillips-Perron 

n 
Without trend With trend Without trend With trend 

Totaleinvesteringer 0.93 0.72 0.93 0.64 46 

Aggr_Brønn 1.00 0.83 1.00 0.86 26 

Aggr_Innr 0.87 0.56 0.85 0.51 46 

Aggr_Rør 0.89 0.83 0.74 0.57 26 

Aggr_Landanl 0.00 0.00 0.00 0.00 15 

Inv_Brønn_Nye_Fast 0.71 0.69 0.72 0.65 26 

Inv_Brønn_Nye_FlyttbInnr 1.00 0.98 1.00 0.98 26 
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Inv_Brønn_Ufordelt 0.99 0.97 0.99 0.98 10 

Inv_Innr_Eksist_Modifik 0.60 0.66 0.57 0.63 46 

Inv_Innr_Nye_BunnfOgAndr 0.88 0.61 0.89 0.56 24 

Inv_Innr_Nye_Flyttb 0.28 0.27 0.18 0.16 21 

Inv_Innr_Nye_LastLager 0.11 0.34 0.07 0.23 4 

Inv_Innr_Nye_UndervAnnl 0.48 0.14 0.58 0.18 21 

Inv_Innr_Utbygg_Andre 0.78 0.72 0.74 0.68 9 

Inv_Landanl 0.00 0.00 0.00 0.00 15 

Inv_Rør 0.38 0.45 0.22 0.24 26 

Inv_Rør_Landanl 1.00 1.00 1.00 1.00 1 

 

 

An augmented Dickey-Fuller and Phillips-Perron test reveals that aggregate investment, crude oil price 

and the USD/NOK exchange rate are integrated of the first order (I(1)), while realized volatility is 

stationary in levels. As such, the realized volatility is excluded from further cointegration testing. The 

Johansen’s cointegration test indicates that total investment and the oil price exhibits a long-term 

relation as the yielded trace statistics of 19.30 exceed the critical 5 percent value of 15.41 under the 

null hypothesis of zero cointegrated relations. The number of lags is specified by utilizing the Hanna-

Quinn information criterion. However, with a yielded test statistics of 14.17 it appears that there is no 

long-term relation between aggregate investment and the USD/NOK exchange rate. Thus, it is possible 

to form an ECM with the aggregate investment and crude oil price, but neither volatility nor the 

exchange rate can be included. Consequently, we opt for applying log-difference to the aggregate 

investment, effectively transforming the variable into the growth of aggregate investment. 

Differencing aggregate investment changes the econometric model from addressing a long-term 

relationship to a short-term2. However, this is inconsequential if only the one-step ahead forecast is of 

interest.  

It is likely that a vast number of variables have the potential to forecast future growth in aggregate 

oil and gas investment on the NCS. Based on expert knowledge and learnings gained from related 

studies of investment activity on the NCS, quoted in Section 1, we consider three potential 

predicators in addition to past investment growth. See Table 4 for a full list of all predicators and 

their respective definition. 

Table 4: List of investment growth predictors 
This table shows the definition of the variable to be forecasted and the list of evaluated predictors. 

Variable Description 

Investment growth Logarithmic change in aggregate oil and gas 
investment on the NCS with an annual 
frequency, log(𝑖𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡𝑡) −
log(𝑖𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡𝑡−1) . 

  
Change in oil price  Logarithmic change in Brent crude oil price with 

an annual frequency, log(𝑝𝑡) − log(𝑝𝑡−1) . 
  

                                                           
2 Instead of forecasting investment (𝐼𝑛𝑣𝑡) at time 𝑡, the continuously compounded return (ln(𝐼𝑛𝑣𝑡) −
ln 𝐼𝑛𝑣𝑡−1) between period 𝑡 − 1 and 𝑡 is forecasted. These are related in the following manner:  

𝐼𝑛𝑣𝑡 = 𝐼𝑛𝑣𝑡−1 ∗ 𝑒
ln(

𝐼𝑛𝑣𝑡
𝐼𝑛𝑣𝑡−1

)
= 𝐼𝑛𝑣𝑡−1 ∗

𝐼𝑛𝑣𝑡
𝐼𝑛𝑣𝑡−1
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Volatility Volatility of the crude oil price approximated 
through the realized volatility proxy, see 
Equation 5  

  
Change in exchange rate Logarithmic change in USD/NOK exchange rate 

with an annual frequency, log(𝐹𝐸𝑋𝑡) −
log(𝐹𝐸𝑋𝑡−1). 

 

Growth in aggregate investment at time 𝑡 is the variable to be predicted, but given the considerable 

lead time between project execution and production start (see Figure 11), it is reasonable to use 

information about investment growth available at 𝑡 − 1 as a predicator. Under the assumption of 

economic rationality, investment is fundamentally driven by expectations for future profitability. Given 

the validity of this claim, anything that exhibits the power to affect the profitability ranking of the 

companies’ portfolio of investment opportunities is a potential predicator. On the income side, the oil 

price is perhaps the single most important driver of profitability. As such, the crude oil price growth is 

a good potential predictor of future aggregate investment growth.  

Investments are measured in NOK, but material and equipment from the international market is a 

necessity. As such, the exchange rates matters for the monetary amount of NOK invested. Everything 

else being equal, an increase in the USD/NOK exchange rate will decrease the purchasing power of 

Norway and subsequently the amount invested will increase. 

Volatility is an important driver of investment. First, in terms of real options, the value of waiting 

increases as the volatility increases and the market becomes more erratic. Second, given the capital 

intensive nature of oil and gas investments, it is quite plausible that increased volatility makes decision-

makers more hesitant to commit. Consequently, prima facia, we expect volatility to exhibit a negative 

influence over the aggregate investments.  Volatility is latent which implies that is necessary to 

estimate it ex post. Volatility has a very precise definition in the literature (Andersen et al., 2006, 780):  

“[...] in financial economics, volatility is often defined as the (instantaneous) standard deviation (or 

“sigma”) of the random Wiener-driven component in a continuous-time diffusion model.” In practice, 

there is a wide variety of approaches to estimate the latent ex post volatility. In this paper, we choose 

the utilize the realized volatility proxy. Following the notation of Andersen and Bollerslev (1998) and 

Hansen and Lunde (2001) we defined realized volatility in the following manner. First, let 𝑡 exhibit the 

desired frequency of the time series (yearly in this case) and 𝑚 be the number of intra-frequency 

observations. Then, the continuously compounded returns on the oil price is given as follows:  

 𝑟(𝑚),𝑡+𝑗/𝑚 = log(𝑝𝑡+𝑗/𝑚) − log(𝑝𝑡+(𝑗−1)/𝑚)   ∀   𝑗 = {1,… ,𝑚} (1) 

 

With the growth or returns on the oil price realized volatility is defined as: 

 

𝜎𝑡
2 ≡ 𝑣𝑎𝑟(𝑟𝑡|ℱ𝑡−1) 

=   𝐸 (∑𝑟(𝑚),𝑡+𝑗/𝑚

𝑚

𝑗=1

− 𝐸(𝑟(𝑚),𝑡+𝑗/𝑚|ℱ𝑡−1))

2

 

=∑𝑣𝑎𝑟(𝑟(𝑚),𝑡+𝑗/𝑚|ℱ𝑡−1)

𝑚

𝑗=1

+∑𝑐𝑜𝑣(𝑟(𝑚),𝑡+𝑖/𝑚, 𝑟(𝑚),𝑡+𝑗/𝑚|ℱ𝑡−1)

𝑖≠𝑗

 

(2) 
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Under the assumption of no autocorrelation in the continuously compounded intra-frequency return 

on the crude oil price, the identity of the volatility becomes: 

 𝜎𝑡
2 ≡ 𝑣𝑎𝑟(𝑟𝑡|ℱ𝑡−1) =∑𝑣𝑎𝑟(𝑟(𝑚),𝑡+𝑗/𝑚|ℱ𝑡−1)

𝑚

𝑗=1

 (3) 

Further, given a sufficiently rapid measurement of the intra-frequency we can further assume that the 

expected return becomes minuscule and subsequently neglectible. 

 𝐸(𝑟(𝑚),𝑡+𝑗/𝑚
2 |ℱ𝑡−1) ≈ 𝑣𝑎𝑟(𝑟(𝑚),𝑡+𝑗/𝑚|ℱ𝑡−1) (4) 

 

Finally, the realized volatility becomes the squared sum of the continuously compounded intra-

frequency  

 �̂�(𝑚),𝑡
2 ≡∑𝑟(𝑚),𝑡+𝑗/𝑚

2

𝑚

𝑗=1

 (5) 

 

With the theoretical motivation and technical definitions of the predictors in mind, we further 

investigate the statistical properties of the proposed predicators of growth in aggregate oil and gas 

investment on the NCS.  

First, Figure 7 shows the statistical properties of the growth in aggregate investment. 

Figure 7: Growth in aggregate investment 
This figure shows the growth in aggregate oil and gas investment on the Norwegian Continental 
Shelf between 1970 and 2015. Growth is here defined as the logarithmic change in investment. 
Subfigure (a) displays the development over time in investment growth, (b) the distribution 
approximated by a histogram and Epanechnikov kernel density plot, and (c) the autocorrelation 
function. All data was provided by the Norwegian Petroleum Directory. 

(a) Logarithmic returns (b) Distribution 

  
(c) Autocorrelation 
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While aggregate investment is not stationary in levels, both the Augmented Dickey-Fuller and Phillips-

Perron test confirm that the logarithmic change, i.e. the growth, is stationary. By inspecting the 

distribution of the growth through a histogram and an Epanechnikov kernel density plot, we can see 

that it is reasonably well behaved. Based on the plot and summary statistics there appears to be some 

outliers causing the distribution to exhibit positive skewness. A more formal Jarque-Bera test confirms 

that the distribution is indeed not normally distributed. The autocorrelation plot shows that the 

autocorrelation of the investment resembles a damped sinusoid, that is, it declines geometrically with 

the lags and somewhat alternates between being positive and negative. However, only the first lag is 

significant on a five percent level. Consequently, it seems that little value can be gained from applying 

an autoregressive model on the investment growth with a large lag structure. 

Figure 8: Crude oil price 
This figure shows descriptive statistics regarding the crude oil price and return. Subfigure (a) displays 
the price, (b) the return, (c) the distribution of the return approximated through a histogram and 
Epanechnikov kernel density plot, and (d) the autocorrelation function of the return. 

(a) Crude oil price (b) Crude oil price return 

  
(c) Crude oil price return distribution (d) Crude oil price return autocorrelation 
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Second, the characteristic of the oil price is well known in the literature. As observed in Figure 8, the 

variable is not stationary in level but stationary after applying the first difference. The distribution of 

the oil price growth exhibits considerable amount of leptokurtosis and consequently is not normally 

distributed. An inspection of the autocorrelation of the oil price growth strongly indicates there is 

little forecastability in the statistical sense. 

Third, Figure 9 shows the characteristics of the realized volatility of the crude oil price. Confirming to 

stylized facts, the volatility is stationary and possess a mean reverting behaviour, thus implying that 

shocks eventually dies out.  Being naturally bound in the interval of zero to infinity, the distribution of 

the realized volatility is obviously not normally distributed. Interestingly, there appear to be a miniscule 

amount of autocorrealtion in the volatility.  

 

Figure 9: Realized volatility 
This figure shows descriptive statistics regarding the realized volatility of the crude oil price. 
Subfigure (a) realized volatility, (b) the distribution of the volatility approximated through a 
histogram and Epanechnikov kernel density plot, and (d) the autocorrelation function of the 
volatility. 

(a) Realized volatility (b) Efficiency distribution 

  
(c) Efficiency growth autocorrelation 
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Finally, Figure 10 shows the statistical characteristics of the USD/NOK exchange rate. Confirming to 

prior beliefs, the exchange rate appears to contain a unit root in levels but is stationary on the first-

difference. The exchange rate has changed extensively throughout the sample period, but cannot grow 

ad infinitum. The distribution of the exchange rate growth deviates from the normal by being 

characterized by a slight positive skewness and a considerable kurtosis.  Beside a significant first lag, 

there appears to be a miniscule amount of autocorrelation. 

Figure 10: USD/NOK exchange rate 
This figure shows descriptive statistics regarding the USD/NOK exchange rate. Subfigure (a) displays 
the level, (b) the growth, (c) the distribution of the growth approximated through a histogram and 
Epanechnikov kernel density plot, and (d) the autocorrelation function of the growth.  

(a) Exchange rate (b) Exchange rate growth 

  
(c) Exchange rate growth distribution (d) Exchange rate growth autocorrelation 
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Statistical forecasting in this context is utterly deterministic, which is to say that the forecast for the 

future is derived only from historical observations of the predicators. A prevalent point of contention 

in that regard is how much of the past is relevant. Admittedly, this is challenging to answer with any 

certainty. However it is generally accepted that the distant past matters less the recent. One point of 

departure is to consider the timing aspects of investments.  

Figure 11 (a) shows the distribution for the investment execution time, defined as the number of years 

between the acceptance of the Plan for Development and Operations (PDO) and production start. In 

other words, how long time it takes to develop a field. 

 Given the irreversible nature of these types of investment, it is difficult to cancel a project once 

initiated. As discerned from the distribution of the execution time, it takes an average of 3.3 years from 

a project is initiated to its completion.  This implies that even if a dramatic fall in oil prices were to 

effectively stop most new investments, it will still take years to see the full effect due to the long lead 

time in project execution. Analogously, Figure 11 (b) shows the distribution of planning time, which is 

here approximated as the number of years between the discovery of an oil and gas filed and project 

sanctioning (date of PDO).  Although this proxy is imperfect, it is evident that it can take a considerable 

amount of time before a project is initiated. This seems to be indicating that predictors can have a long 

lasting effect.  

 

Figure 11: Project execution time 
This figure shows the distribution of the length of project execution approximated though histogram 
and Epanechnikov kernel density plot. Execution time is defined here as the number of years in 
difference between the date for PDO approval and production start.  

(a) Execution time (b) Planning time 

  
 

The simplest statistical approach to gain insight regarding how far the temporal reach of the predictors 

are, is the consider the correlation between investment growth at time 𝑡 and the predictors at time 

𝑡 − 𝑖 for 𝑖 greater or equal to one. Table 5 displays the results from the outlined analysis. As it appears, 

the oil price growth has a noteworthy relation to the aggregate investment up until the fourth lag 

before becoming minuscule – a trait that appears to be similarly shared by the volatility and exchange 

rate growth.  The oil price growth has a positive correlation for the first to third and is negative at the 

fourth lag. The volatility has a positive correlation for the first two lags before becoming negative. 
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Finally, the exchange rate growth begins with a correlation of zero before becoming negative and 

noteworthy.  Besides differing from zero, the causal interpretation of the correlations is not of interest. 

It is possible that the predictors still possess and influence over the aggregate investment beyond the 

fifth lag, but due to practical considerations, it is not feasible to pursue a longer lag length. First, as the 

lag length is increased the sample period is decreased and subsequently statistical testing become 

more challenging. Second, incrementally increasing the number of lags yields an almost exponential 

increase in the computation time when evaluating all possible combinations of lags. 

Table 5: Correlation 
This table shows the correlation between the aggregate investment return for oil and gas projects at 
the Norwegian Continental Shelf and various lags of a set of proposed predictors.  The included 
predictors are the growth in crude oil prices, the realized volatility of the crude oil price and the 
USD/NOK exchange rate growth. 

Variable Lag(1) Lag(2) Lag(3) Lag(4) Lag(5) 

Oil price growth 0.21 0.37 0.14 -0.24 0.04 

Realized volatility 0.23 0.26 -0.10 -0.25 0.05 

Exchange rate growth 0.00 -0.26 -0.24 -0.12 -0.02 

 

 

5. Methodology 
The purpose of this research is to identify the model with highest forecast accuracy for oil and gas 

investment on the Norwegian Continental Shelf. We evaluate several models differing in specification 

based on their out-of-sample performance. The models’ forecast accuracy are subsequently evaluated 

by a set of different statistical loss function. The validity of the ranking of the models forecast accuracy 

is tested both with the Diebold and Mariano (1995) predictive accuracy test and with Hansen and 

Lunde (2011) model confidence procedure. The remainder of this section is structured as follows. 

Subsection 5.1 presents the list of all considered models and their specifications. Subsection 5.2 

outlines the forecast scheme and specify the criteria used for evaluating the forecast accuracy of the 

models. Finally, Subsection 5.3 presents the hypothesis test utilized and addresses the possibility 

sampling uncertainty. 

 

5.1 Model specification 
The main model of interest in this research is the Autoregressive Distributed Lag model (ADL). The 

explanatory variables in the model are selected based on theoretical considerations. Several 

specifications of the ADL are considered, both in terms of number of lags and which regressors to 

include. Specifically, with all possible combinations of lags subjected to a chosen max lag3 and all 

possible inclusion schemes for the regressors, m+∑ mi+1q
i=1 (q

i
) models are evaluated, where 𝑚 is 

the maximum number of lags allowed and 𝑞 the number of regressors. The maxlag is determined both 

such that the sample contain sufficiently many observations for evaluation and that it is 

computationally feasible to consider all specifications. The ADL model is given by: 

                                                           
3 In general, the max lag is a trade-off between the models explanatory power and keeping it parsimonious. 
Additionally, as the max lag increases, the sample size decreases. 
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 𝑦𝑡 = 𝛼 +∑𝛽𝑖𝑦𝑡−𝑖

𝑝

𝑖=1

+∑(∑𝛾𝑗𝑘𝑥𝑗𝑡−𝑘

𝑟

𝑘=1

)

𝑞

𝑗=0

+ 𝑢𝑡   (6) 

 

Where 𝑦 is the dependent variable and 𝑥 is the independent variable. Additionally to the ADL model, 

we include a driftless random walk as a more parsimonious and atheoretical benchmark. If the ADL 

model with its complexity is not able to outperform the benchmark it is of limited value.  

Random Walk 𝑦𝑡 = 𝑦𝑡−1 + 𝑢𝑡 (7) 
 

5.2 Forecast scheme and evaluation 
With the given set of models, the forecast is made both in-sample and ex post (pseudo) out-of-sample. 

While the in-sample procedure is fast, it is prone to data mining and overfitting. That is, random chance 

and capturing the idiosyncratic behaviour of the sample might lead to seemingly good model but with 

poor external validity. To address this problem we apply out-of-sample forecasting procedures. 

However, it comes at the cost of being computationally more demanding. The out-of-sample 

procedure is implemented as follows. With 𝑇 observations ordered as {𝑥1, … , 𝑥𝑇}, we divide the data 

into two subperiods: {𝑥1, … , 𝑥𝑛} and {𝑥𝑛+1, … , 𝑥𝑇}. The former is utilized for estimating the model and 

the latter for evaluating the forecast made, see Figure 12. A rolling window scheme is utilized such that 

the forecast subset is incrementally decreased while the estimation subset remains the same size. 

Thus, a total number of 𝑇 − 𝑛 + 1 − 𝑠 pseudo out-of-sample forecasts are made. Here 𝑠 denotes how 

many periods into the future the forecast is made for.  The split point 𝑛 is of paramount importance 

for the out-of-sample procedure. The demarcation between the estimation and forecast window must 

be specified such that both are sufficiently long to make valid inference. 

 

Figure 12: Sample utilization 

 
 

The forecast accuracy of a particular model is evaluated by comparing the actual and the predicted 

investment with a weighing-scheme dictated by a loss function. Loss functions are typically either 

economic or statistical. To preserve the general applicability of this research only the latter is 

considered. While the statistical loss functions are arbitrary, they attempt to emulate the users’ utility 

function. In practice, there is a wide variety of available loss functions. The main difference relates to 

(1) whether the loss function employs a symmetric or asymmetric penalty to over and under 

predictions, and (2) whether an increase in the absolute in error is penalized linear on nonlinearly.   In 

this paper, we choose to utilize the root mean square error (RMSE) loss function, see Equation 8. First, 

RMSE is widely used in the forecasting literature. By using a frequently applied loss function, it 

becomes easier to compare the obtained results to related literature. Second, it can be argued that 

RMSE fits the intended usage as it has a symmetric and nonlinear penalty.   That is, under and over 

predictions of equal size is regarded as equally undesirable, and large forecast errors are penalized 

over proportionally stricter compared to minor errors. 
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RMSE: 𝐿(𝑦, �̂�) = √(�̂� − 𝑦)2 (8) 

 

5.3 Model confidence procedure 
Based on each loss function we can order the models from highest to lowest forecast accuracy. To 

assure the validity of the forecast accuracy raking we perform a formal hypothesis test, specifically the 

model confidence procedure proposed by Hansen et al (2011).  Let 𝑦𝑡 bet the observed investment on 

the NCS at time 𝑡 and  �̂�𝑖,𝑡 be the predicted value also at time 𝑡 generated by a given model 𝑖. Given 

the observed and predicted values of investment, we can evaluate the forecast accuracy with any given 

loss function such that we let 𝐿𝑖,𝑡, denote the loss at time 𝑡 for model 𝑖. 

 𝐿𝑖,𝑡 = 𝐿(𝑦𝑡 , �̂�𝑖,𝑡) (9) 

 

With a vector of loss values for all 𝑀 considered models, we want to define the superior set of models 

(SSM). That is, we attempt to find a subset of these models, �̂�1−𝛼
∗ ⊆ 𝑀, such that the subset contains 

models that possess equal accuracy but are superior to the remaining set of models given a confidence 

interval of 1 − 𝛼. To accomplish this, two concepts are of paramount importance, the equal predictive 

ability (EPA) hypothesis and the elimination rule.  

To specify the EPA hypothesis, both the loss differential and the relative loss differential must be 

defined. Let 𝑑𝑖𝑗,𝑡 denote the difference in forecast accuracy between model 𝑖 and 𝑗 at time 𝑡, i.e. the 

loss differential is given by:  

 𝑑𝑖𝑗,𝑡 = 𝐿𝑖,𝑡 − 𝐿𝑗,𝑡 , 𝑖, 𝑗 = 1,… ,𝑚, 𝑡 = 1,… , 𝑇 (10) 
 

Further, let 𝑑𝑖∙,𝑡 be the accuracy of model 𝑖 compared with the remaining set of models, i.e., the 

relative loss differential: 

 𝑑𝑖∙,𝑡 = (𝑚 − 1)−1∑𝑑𝑖𝑗,𝑡
𝑗∈𝑀

𝑖 = 1,… ,𝑚 (11) 

 

With 𝑑𝑖𝑗,𝑡 and 𝑑𝑖,∙ the EPA hypothesis is expressed as: 

 𝐻0,𝑀: 𝔼(dij) = 0 ∀ 𝑖, 𝑗 = 1,… ,𝑚 (12) 

 𝐻1,𝑀: 𝔼(dij) ≠ 0 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑖, 𝑗 = 1,… ,𝑚  

and 

 𝐻0,𝑀: 𝔼(di∙) = 0 ∀ 𝑖, 𝑗 = 1,… ,𝑚 (13) 
 𝐻1,𝑀: 𝔼(di∙) ≠ 0 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑖, 𝑗 = 1,… ,𝑚,  

 

where the former is valid for loss differential and the latter for the relative. Under the null hypothesis, 

all models possess equal predictive ability such that no model is superior to any other considered 

model. To implement these hypothesis tests, the statistics 𝑡𝑖𝑗  and 𝑡𝑖,∙ are required as an intermediate 

step to obtain the test statistics 𝑇𝑅,𝑀 and 𝑇𝑚𝑎𝑥,𝑀. 
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𝑡𝑖𝑗 =

�̅�𝑖𝑗

√𝑣𝑎�̂�(�̅�𝑖𝑗)

𝑓𝑜𝑟 𝑖, 𝑗 ∈ 𝑀
 (14) 

 

 
𝑡𝑖,∙ =

�̅�𝑖,∙

√𝑣𝑎�̂�(�̅�𝑖,∙)

𝑓𝑜𝑟 𝑖 ∈ 𝑀
 (15) 

 

The numerators in the test statistics are given respectively by �̅�𝑖𝑗 = 𝑚
−1∑ 𝑑𝑖𝑗,𝑡

𝑚
𝑡=1  and �̅�𝑖,∙ =

(𝑚 − 1)−1∑ �̅�𝑖𝑗𝑗∈𝑀   while the denominators are simply the bootstrapped estimate of the variance of 

�̅�𝑖𝑗  and �̅�𝑖,∙.  Finally, 𝑡𝑖𝑗  and 𝑡𝑖 ,∙ are used to define 𝑇𝑅,𝑀 and 𝑇𝑚𝑎𝑥,𝑀. 

 

 𝑇𝑅,𝑀 = max
𝑖,𝑗∈𝑀

|𝑡𝑖𝑗| 𝑎𝑛𝑑 𝑇𝑚𝑎𝑥,𝑀 = max
𝑖∈𝑀

𝑡_(𝑖,∙) (16) 

 

Given the test statistics, if the null hypothesis is rejected such that there exist at least one inferior 

model, an elimination rule is applied to remove models with lower performance. This process is 

repeated until the null hypothesis can no longer be rejected. In the best case scenario, the set of 

superior models will contain only one model. The elimination rule is specified as follows: 

 𝑒𝑚𝑎𝑥,𝑀 = arg max
𝑖∈𝑀

�̅�𝑖,∙

√𝑣𝑎�̂�(�̅�𝑖,∙)

𝑎𝑛𝑑 𝑒𝑅,𝑀 = arg max
𝑖

{
 

 

sup
𝑗∈𝑀

�̅�𝑖𝑗

√𝑣𝑎�̂�(�̅�𝑖𝑗)}
 

 

 (17) 

6. Empirical results 
Based on the ex post out-of-sample forecast evaluation of the 1080 ADL model specifications there is 

a compelling amount of evidence  indicating that it is possible to outperform the driftless random walk 

benchmark in forecasting future aggregate investment on the NCS. By utilizing the RMSE loss function 

for measuring the forecast errors, we find that 61 different specifications of the model was capable of 

producing forecasts with a greater accuracy than the benchmark in this particular sample. However, in 

line with fundamental statistical theory, any set of data is regarded as a random realization of an 

underlying and unobservable data generating process. Consequently, it is possible that the model 

forecast accuracy ranking obtained by comparing the models associated loss function values is 

distorted by noise. Different samples are not guaranteed to produce the same ranking. To address this 

sample uncertainty, we employ the Diebold and Mariano test of equal predictive accuracy by 

comparing each subsequent model against the benchmark. As revealed by Table 6, the null hypothesis 

of equal predictive accuracy was rejected on a ten per cent level for 30 different specifications of the 

ADL model. For the 31 models that were seemingly superior to random walk - but not able to reject 

the null hypothesis - it would seem that the variability within the models’ forecast errors were 

considerable. When the variability is extensive it is challenging to determine whether the model is 

genuinely accurate or just happens to make an accurate predictions in this particular sample of data 

due to luck. Thus, the conservative course of action is to dismiss such models.  
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Table 6: Model rank 

This table shows the forecast accuracy values for all models that statistically outperform the 

random walk benchmark. The p-value is the outcome of the Diebold-Mariano test of superior 

predictability comparing the ADL against the random walk benchmark, where random walk is 

superior under the null. Finally, 𝑇𝑅,𝑀 and 𝑇𝑚𝑎𝑥,𝑀 refer to the yielded result from the model 

confidence procedure.  Outcome “A” implies that the model was eliminated from the set of 

superior models at a significance level of one percent, “B” at five percent, “C” at ten percent and “-” 

implies that the model is never eliminated. 

Model RMSE p-value 𝑻𝑹,𝑴 𝑻𝒎𝒂𝒙,𝑴 

ADL(1,1,1,1) 0.1159 0.0000 B - 

ADL(3,1,1,1) 0.1211 0.0084 B - 

ADL(1,1,2,1) 0.1228 0.0000 B - 

ADL(3,1,2,0) 0.1230 0.0813 - - 

ADL(2,1,1,1) 0.1240 0.0120 B - 

ADL(1,0,3,0) 0.1258 0.0285 - - 

ADL(3,1,2,1) 0.1266 0.0151 B - 

ADL(1,1,1,2) 0.1268 0.0354 B - 

ADL(1,0,4,0) 0.1272 0.0721 - - 

ADL(1,0,1,0) 0.1272 0.0453 - - 

ADL(3,1,1,0) 0.1273 0.0847 - - 

ADL(3,1,1,2) 0.1278 0.0141 B - 

ADL(2,1,2,1) 0.1283 0.0195 B - 

ADL(3,1,4,1) 0.1285 0.0104 - - 

ADL(1,0,2,0) 0.1289 0.0751 - - 

ADL(1,1,3,1) 0.1295 0.0002 B - 

ADL(2,1,1,2) 0.1304 0.0499 A - 

ADL(1,1,2,2) 0.1306 0.0205 B - 

ADL(3,1,4,2) 0.1314 0.0186 B - 

ADL(1,1,4,1) 0.1317 0.0034 B - 

ADL(3,1,0,0) 0.1318 0.0919 - - 

ADL(3,1,3,1) 0.1318 0.0257 B - 

ADL(2,1,3,1) 0.1335 0.0460 B - 

ADL(2,1,4,1) 0.1340 0.0803 B - 

ADL(1,1,0,1) 0.1341 0.0943 - - 

ADL(3,1,2,2) 0.1343 0.0254 B - 

ADL(2,1,2,2) 0.1344 0.0454 A - 

ADL(1,1,5,1) 0.1346 0.0270 B - 

ADL(1,0,0,0) 0.1349 0.0068 - - 

ADL(2,1,4,2) 0.1365 0.0978 B - 

 

Comparing the models forecast accuracy against random walk with the Diebold and Mariano test is 

useful for eliminating the inferior models, but it does not determine what the overall best model is. To 

answer this question, we utilize the Hansen and Lunde model confidence set procedure to 

simultaneously compare several models against each other. The procedure works by using an iterative 

procedure where the weakest model, in terms of forecast accuracy, is eliminated until it is no longer 
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possible to differentiate between the models. To address the sample uncertainty, the procedure 

estimates the variability in the models forecast errors by bootstrapping. As revealed by Table 6, the 

set of superior models appears to depend on whether the 𝑇𝑅,𝑀 or 𝑇𝑚𝑎𝑥,𝑀 test statistic is applied. While 

both approaches are conceptually similar, the underlying mathematical formulation differs. Hence, 

there is no compelling argument for favouring one over the other. Following the 𝑇𝑅,𝑀 test results, it 

would seem that the set of superior models consists of ten different specification of the ADL model. 

Among these superior models, the 𝐴𝐷𝐿(3,1,2,0) model has the lowest RMSE realization. On the 

contrary, when applying the 𝑇𝑚𝑎𝑥,𝑀 statistic, none of the 30 models superior to random walk can be 

differentiated based on forecast accuracy. Thus, in this set of superior models, the 𝐴𝐷𝐿(1,1,1,1) 

possesses the lowest RMSE. Thus, in summary, we have demonstrated that it is indeed possible to 

outperform the parsimonious random walk forecast on a statistically significant level by using a simple 

ADL approach in an out-of-sample evaluation.  

Whether to base the model selection the 𝑇𝑅,𝑀 or 𝑇𝑚𝑎𝑥,𝑀 test statistic is dependent on subjective 

preferences. As revealed in Table 6, 𝑇𝑅,𝑀 eliminates more models compared to 𝑇𝑚𝑎𝑥,𝑀. Thus, it 

would seem that the latter is more conservative in the sense that it require more evidence to make 

an elimination. On the other hand, being overly conservative potentially means that models that 

demonstrates a high accuracy in this sample might just be the result of luck. In the pursuit of a good 

model it can be argued that it is preferable to eliminate too many rather than too few as it reduces 

the probability of selecting a model that could potentially make considerable forecast errors. 

Consequently, we opt to base the model selection on the 𝑇𝑅,𝑀 statistic. Under this scenario, the 

selected model becomes 𝐴𝐷𝐿(3,1,2,0), which implies that three lags are included for aggregate 

investment growth Δ ln(𝐼𝑛𝑣), one lag for crude oil price growth Δ ln(𝑂𝑖𝑙𝑃𝑟𝑖𝑐𝑒) and two lags for 

realized volatility of the crude oil price Δ ln(𝑉𝑜𝑙). The USD/NOK exchange rate growth Δ ln(𝐹𝐸𝑋) is 

not included. The equation for the proposed regression model is given in Equation 18.  

 
Δ ln(𝐼𝑛𝑣𝑡) = 𝛼 +∑𝛽𝑖Δ ln(𝐼𝑛𝑣𝑡−𝑖)

3

𝑖=1

+ 𝛾Δ ln(𝑂𝑖𝑙𝑃𝑟𝑖𝑐𝑒𝑡−1) +∑𝛽𝑗𝑉𝑜𝑙𝑡−𝑗

2

𝑗=1

+ 𝑢𝑡 

                               

(18) 

 

Given the stated objective of forecasting future movements in aggregate oil and gas investments on 

the NCS and the atheoretical nature of time series models in general, a causational interpretation of 

the obtained coefficient estimates and their respective significance is not of primary interest or even 

advisable. Nevertheless, Figure 13 shows the development of the obtained coefficient estimates and 

associated p-values from the regression model presented in Equation 21.  

As observed in subfigure (a), the coefficient for the first lag of investment growth is positive, thus 

indicating that aggregate investments possesses momentum. However, Subfigure (b) and (c) show that 

the second and third lags are estimated to be negative. Thus, it appears that investment goes through 

a cycle of momentum followed by a correction. Subfigure (d) shows the coefficient for the crude oil 

price growth. The coefficient appears to start out negative, but quickly becomes positive. Thus, later 

in the sample, investment tends to increase when the oil price increases. Subfigure (e) shows the 

coefficient for the first lag of the realized volatility of the crude oil price. The coefficient is negative 

throughout all subsamples. This implies that investment tends to decrease when volatility increases. 

Similarly, Subfigure (f) shows the coefficient of the second lag of the volatility. In this case, the 

coefficient lies close to zero, thus alternating between being positive or negative.  
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Figure 13: Coefficients 
This figure shows the development of the coefficients of the ADL(3,1,2,0) with the corresponding 95 
% confidence interval and p-values as the estimation rolls over the overall sample period. The initial 
estimation window covers the period of 1975 to 1995. The regression equation is given as follows:  

Δ ln(𝐼𝑛𝑣𝑡) = 𝛼 +∑𝛽𝑖Δ ln(𝐼𝑛𝑣𝑡−𝑖)

3

𝑖=1

+ 𝛾Δ ln(𝑂𝑖𝑙𝑃𝑟𝑖𝑐𝑒𝑡−1) +∑𝛽𝑗𝑉𝑜𝑙𝑡−𝑗

2

𝑗=1

+ 𝑢𝑡 

 

(a) L1. Investment growth (b) L2. Investment growth 

  
(c) L3. Investment growth (d) L1. Crude oil price growth 

  
(e) L1. Realized volatility (f) L2. Realized volatility 

  
  

 

Figure 14 shows the predicted compared to realized aggregate investment. Subfigure (a) illustrates 

how the whole sample is initially divided into an estimation and an evaluation window. Other than 
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ensuring that the former is sufficiently large to estimate the model and the latter is sufficient large to 

carry out the hypothesis testing, the split point between the two is essentially arbitrary. It is quite 

possible that an alternate split point would yield different results. Subfigure (b) illustrates the forecast 

error of the 𝐴𝐷𝐿(3,1,2,0) represented as the area between the realized and predicted aggregate 

investment. An important distinction is that this is an illustration of the forecast error and not the 

forecast accuracy. Subfigure (c) compares the realized and predicted aggregate investment throughout 

the evaluation window. Finally, subfigure (d) additionally adds the 𝐴𝐷𝐿(3,1,2,0) forecast without re-

estimation of the coefficients at every step. As it appears, re-estimating the models coefficients yields 

better forecast accuracy.  

 

Figure 14: Model forecast accuracy 
This figure illustrate the forecast accuracy of the ADL(3,1,2,0) model by comparing the predicted and 
realized investment growth. Subfigure (a) shows the investment growth during the full sample 
period, the predicted values during in forecast window and the forecast accuracy represented as the 
area between these time series. Subfigure (b) shows the forecast accuracy as the area between the 
predicted and realized investment growth. Subfigure (c) compares the predicted and realized 
investment growth during the forecast window. Subfigure (d) compares the prediction made from 
the model both with and without updating the coefficient estimates with the realized investment 
growth.   

(a) Full sample period (b) Forecast accuracy 

  
(c) Predicted compared to realized (d) Updating compared to non-updating 
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Analogous to Figure 14, Figure 15 shows the predictive powers of the random walk benchmark model. 

Conforming to the conclusions made by the Diebold and Mariano test, the 𝐴𝐷𝐿(3,1,2,0) model 

outperforms the random walk.   

Figure 15: Benchmark forecast accuracy 
This figure illustrate the forecast accuracy of the random walk benchmark model by comparing the 
predicted and realized investment growth. Subfigure (a) shows the investment growth during the 
full sample period, the predicted values during in forecast window and the forecast accuracy 
represented as the area between these time series. Subfigure (b) shows the forecast accuracy as 
the area between the predicted and realized investment growth. Subfigure (c) compares the 
predicted and realized investment growth during the forecast window. Subfigure (d) compares 
both the random walk and 𝐴𝐷𝐿(3,1,2,0) forecast with the realized investment growth.   

(a) Full sample period (b) Forecast accuracy 

  
(c) Predicted compared to realized (d) Benchmark compared to ADL 

  
 

7. Conclusion 
It is difficult to make predictions, especially about the future. In this paper, we have investigated the 

forecastability of aggregate oil and gas investments on the NCS. By empirically testing whether the set 

of statistical ADL models can significantly outperform a driftless random walk forecast, we reach the 

following conclusion: it is challenging but possible. Out of the 1080 different evaluated models, only 

30 are capable of producing a RMSE significantly lower than the RMSE associated with random walk. 

Based on the 𝑇𝑅,𝑀 test statistic of the model confidence set procedure, the model with the highest 

realization of forecast accuracy is the 𝐴𝐷𝐿(3,1,2,0) model. 

The choice of loss function is crucial for the choice of forecasting model. Among the models that 

generate predictions that outperform random walk, we have chosen the model with the traditional 
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criteria of lowest RMSE. By applying a method that squares the errors we implicitly assume risk 

aversion on part of the estimator. Whether the forecasts are to be used by government, oil companies 

or oil service companies, we believe this to be a reasonable presumption. Small deviations in aggregate 

investments are manageable. It is the large forecasting errors that are problematic, as they may lead 

to suboptimal decisions. For the government, e.g., a failure to predict a large reduction in aggregate 

activity may mean that accommodating measures like tax concessions and an increase in exploration 

acreage come too late. Failure to predict a large increase in aggregate investments may, e.g. for an oil 

company cause an underestimation of cost and lead to overinvestment.  

Further insight about the forecastability of the aggregate oil and gas investment was gained. First, as 

to be expected, it appears to be beneficial for the models’ forecasting accuracy to re-estimate the 

model coefficients as new information becomes available. Based on the results obtained from the 

𝐴𝐷𝐿(3,1,2,0) model using the various subsamples of data, the coefficients tend change over time but 

predominantly the sign of the coefficients remains the same.  
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