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Abstract

The Basel Committee’s minimum capital requirement function for banks’ credit risk

is based on value at risk. This paper performs a statistical and economic analysis of the

consequences of instead basing it on expected shortfall, a switch that has already been

set in motion for market risk. The empirical analysis is carried out by means of both

theoretical simulations and real data from a Norwegian savings bank group’s corporate

portfolio. Expected shortfall has some well known conceptual advantages compared to

value at risk, primarily a better ability to capture tail risk. It is also sub-additive in gen-

eral, thus always reflecting the positive effect of diversification. These two aspects are

examined in detail, in addition to comparing parameter sensitivity, estimation stabil-

ity and backtesting methods for the two risk measures. All comparisons are conducted

within the Basel Committee’s minimum capital requirement framework. The findings

support a switch from value at risk to expected shortfall for credit risk modelling.

Keywords: Expected shortfall, credit risk, bank regulation, Basel III, tail risk

1 Introduction

This paper addresses the effects of shifting from value at risk (VaR) to expected shortfall (ES)

as the underlying risk measure when computing regulatory capital requirements for banks’
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credit risk. These effects will be measured using both simulated data and real data from a

Norwegian savings bank group’s corporate portfolio.

The Basel Committee on Banking Supervision aims to enhance financial stability world-

wide, partly by setting minimum standards for the regulation and supervision of banks [4].

In 2004, the introduction of the Committee’s second international regulatory accord, Basel

II [1], opened the possibility for banks to calculate their minimum capital requirements us-

ing risk parameters estimated by internal models, instead of using given standard rates (the

standardised approach). The Basel Committee’s minimum capital requirement is calculated

by a function that takes estimates of the following risk parameters as input parameters: prob-

ability of default (PD), loss given default (LGD) and exposure at default (EAD). This function

is derived using VaR as the underlying risk measure, and we will examine how the function’s

properties change when it is derived using ES.

Banks have been allowed to use internal models as a basis for calculating their market

risk capital requirements since 1997 [4], i.e. seven years before the same applied for credit

risk. Internal credit risk models were not allowed at an earlier stage due to the fact that they

are not a simple extension of their market risk counterparts. Data limitations is a key imped-

iment to the design and implementation of credit risk models [5]. Most credit instruments

are not listed with a market value, implying that there are no historical prices to base future

projections on. As there is no market values to compare with the book values, there is no im-

pairment loss. Loss occurs only at default events, and the infrequent nature of these events

makes it difficult to collect enough relevant data. The long time horizons also make the vali-

dation of credit risk models fundamentally more difficult than the backtesting of market risk

models.

In January 2016, the Basel Committee published revised standards for calculation of min-

imum capital requirements for market risk [2], which include a shift from VaR to ES as the

underlying risk measure. The Committee stated that the former reliance on VaR largely stems

from historical precedent and common industry practice. This has been reinforced over time

by the requirement to use VaR for regulatory capital purposes. However, the Committee rec-

ognized that a number of weaknesses have been identified with VaR, including its inability

to capture tail risk [3]. There has currently not been considered a transition from VaR to ES

for measuring credit risk. However, as the development of credit risk models lies a few years

behind the market risk models, there is reason to believe that this might be considered in a
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not so distant future.

The paper is structured as follows. Section 2 introduces the risk parameters used for

credit risk modelling, and shows how the Basel Committee’s capital requirement function is

derived with VaR as the underlying risk measure. Section 3 introduces ES and shows how the

capital requirement function changes when applying this risk measure. An extensive com-

parison of the two different risk measures is presented in Section 4. Aside from a general

comparison of the risk measures’ properties, the section’s main focus is a comparison of the

two resulting versions of the capital requirement function. This includes confidence level

calibration, backtesting methods and a simulation-based comparison of parameter sensi-

tivity. We also examine how VaR and ES values are affected by the tail properties of the loss

distributions, by simulating losses from distribution functions with different tail weights,

using real estimates of risk parameters from a Norwegian savings bank group’s corporate

portfolio. Lastly, the final conclusions are given in Section 5.

2 Credit Risk Modelling

The introduction of Basel II in 2004 opened the possibility for banks to calculate the assets’

risk weights using parameter estimates from internal models. To be able to use this internal

ratings based (IRB) approach, the bank’s risk models have to be approved by the national

supervisory authorities.

In this section we introduce the risk parameters involved, and describe the model choices

made by the Basel Committee when deriving the mathematical function for calculating reg-

ulatory capital under the IRB approach.

2.1 Risk Parameters

Probability of default (PD) is the probability that a borrower will be unable to meet the debt

obligations. This probability is defined for a particular time horizon, typically one year.

Exposure at default (EAD) is the lender’s outstanding exposure to the borrower in case of

default.

Loss given default (LGD) is the lender’s likely loss in case of default. Usually stated as a

percentage of EAD.

The expected loss (EL) is the average credit loss a bank can expect on its credit portfolio
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over the chosen time horizon. The expected loss is calculated as the mean of the loss distri-

bution, and is typically covered by provisioning and pricing policies [6]. The expected loss of

a single loan can be calculated as follows:

EL = PD ·LGD ·E AD. (1)

Banks typically express the risk of a portfolio with the unexpected loss (UL), which is the

amount by which the actual credit loss exceeds the expected loss. The economic capital

held to support a bank’s credit risk exposure is usually determined so that the estimated

probability of unexpected loss exceeding economic capital is less than a target insolvency

rate. The potential unexpected loss which is judged too expensive to hold capital against,

is called stress loss, and leads to insolvency. The probability density function of future credit

losses is the basis for calculating the unexpected loss, and the target insolvency rate is chosen

so that the resulting economic capital will cover all but the most extreme events.

2.2 The Basel Committee’s Capital Requirement Function

Basel II made it possible for banks to use internal risk models to estimate PD, EAD and LGD

for each individual loan [1]. These estimates are used as input parameters for a mathemat-

ical function that calculates the regulatory capital requirement for each loan. This capital

requirement function is based on Gordy’s Asymptotic Single Risk Factor (ASRF) model [7],

which models risk using only one systematic risk factor, which may be interpreted as reflect-

ing the state of the global economy. The model is constructed to be portfolio-invariant, so

that the marginal capital requirement for a loan does not depend on the properties of the

portfolio in which it is held.

The probability of default conditional on a systematic risk factor is calculated by Vasicek’s

adaptation of the Merton model [8]:

PD(X ) =Φ
(
Φ−1(PD)−X

p
Rp

1−R

)
, (2)

whereΦ is the cumulative distribution function of the standard normal distribution and R is

the loan’s correlation with the systematic risk factor X , i.e. the degree of the lender’s exposure

to the systematic risk factor. The unconditional PD on the right hand side reflects expected

default rates under normal business conditions, and is estimated by the banks.
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The ASRF model uses value at risk as the underlying risk measure, meaning that the re-

quired capital is calculated so that the loss probability does not exceed a set target q . This

is achieved by holding capital that covers up to the q th quantile of the loss distribution. By

choosing a realization of the systematic risk factor equal to the q th quantileαq (X ), we obtain

the following expression as X is assumed to be normally distributed:

PD(αq (X )) = PD(Φ−1(1−q)) = PD(−Φ−1(q)) =Φ
(
Φ−1(PD)+Φ−1(q)

p
Rp

1−R

)
. (3)

The expected loss for each loan can be calculated using (1) without the EAD-factor, thus

being expressed as a percentage of the exposure at default. Inserting (3) for PD , we get the

q th quantile of the expected loss conditional on the systematic risk factor X , i.e. the value at

risk [7]:

αq (E [L|X ]) = E [L|αq (X )] = PD(αq (X )) ·LGD. (4)

The LGD value in (4) must reflect economic downturn conditions in circumstances where

loss severities are expected to be higher during cyclical downturns than during typical busi-

ness conditions [6]. This so-called "downturn" LGD value is not computed with a mapping

function similar to (3). Instead, the Basel Committee has decided to let the banks provide

downturn LGD values based on their internal assessments. The reason for this is the evolv-

ing nature of bank practices in the area of LGD quantification.

The Basel Committee’s capital requirement only considers the unexpected loss. As the

ASRF model delivers the entire value at risk, the expected loss PD ·LGD has to be subtracted

from (4). This results in the Basel Committee’s capital requirement function:

K = LGD ·Φ
(
Φ−1(PD)+Φ−1(0,999) ·pRp

1−R

)
−PD ·LGD, (5)

where the Committee has chosen the confidence level q = 0.999. This means that losses on

a loan should exceed the capital requirement only once in a thousand years. The reason why

the confidence level is set so high is partly to protect against inevitable estimation error in

the banks’ internal models [6].

Under the Basel III regulation, banks must multiply (5) by a factor of 1.06, based on an

impact study of Basel II conducted by the Basel Committee [9]. The capital requirement

function is also multiplied by an adjustment factor for the maturity of the loan, as long-term

credits have higher risk than short-term credits. The maturity adjustment M A is given by
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M A = 1+ (M −2.5) ·b(PD)

1−1.5 ·b(PD)
,

where M is years to maturity and b(PD) = (0.11852−0.05478 · ln(PD))2.

As the capital requirement (5) is expressed as a percentage of total exposure, one must

multiply by E AD to get the capital requirement stated as a money amount. The total money

amount shall constitute at least 8 % of the risk-weighted assets:

n∑
i=1

Ki ·E AD i ≥ 0.08 ·
n∑

i=1
RW i ·E AD i ,

where Ki is the calculated minimum capital requirement for asset i , RW i is the risk weight

assigned to asset i and E AD i is the credit risk exposure of asset i .

Thus, the marginal risk-weight of a single asset is calculated as:

RW i = Ki

0.08
= 12.5 ·Ki .

3 Expected Shortfall

Value at risk is not a coherent risk measure, as it has been shown [10] that it is not sub-additive

in general. Thus, a merger of two portfolios may have a greater VaR than the sum of the VaR

of the individual portfolios. This contradicts basic diversification theory, and is considered

as one of the biggest flaws of VaR. Another property of VaR that is often pointed out as a

weakness is that it does not give any information about the size of the losses that occurs with

a probability less than 1− q . This can be particularly problematic if the loss distribution is

heavy-tailed, commonly referred to as tail risk. Assets with higher potential for large losses

may appear less risky than assets with lower potential for large losses.

However, VaR is sub-additive if the loss distribution belongs to the elliptical distribution

family and has finite variance, making it a coherent risk measure in these cases [11]. This in-

cludes the normal distribution, Student’s t distribution (for ν> 2) and Pareto distribution (for

α> 2). For these distributions, VaR becomes a scalar multiple of the distribution’s standard

deviation, which satisfies sub-additivity.
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Even though value at risk is not sub-additive in general, it still remains the most widely

used risk measure. The reason seems to be that its practical advantages are perceived to

outweigh its theoretical shortcomings. Value at risk is considered to have smaller data re-

quirements, easier backtesting and in some cases easier calculation than alternative risk

measures [12]. Value at risk is also popular because of its conceptual simplicity. The eco-

nomic capital calculated by VaR at a confidence level q corresponds to the capital needed to

keep the firm’s default probability below 100 · (1−q) %.

As an alternative to value at risk, Artzner et al. [10] proposed a coherent risk measure

called tailed conditional expectation(TCE). Acerbi and Tasche [13] proposed an extended

version that is also coherent for non-continuous probability distributions:

Definition 1 (Expected Shortfall). Given a confidence level q ∈ (0,1), expected shortfall is de-

fined as

ESq (L) = E
[
L|L ≥ VaRq (L)

]+ (
E

[
L|L ≥ VaRq (L)

]−VaRq (L)
)(P

[
L ≥ VaRq (L)

]
1−q

−1

)
,

where VaRq (L) is the value at risk at the same confidence level.

When P
[
L ≥ VaRq (L)

] = 1− q , as is the case for continuous distributions, the last term

from Definition 1 vanishes, and the expected shortfall equals the TCE.

By using the definition of conditional probability and a change of variables, ES can also

be written as an integral over the VaR values for all confidence levels u ≥ q :

ESq (L) = 1

1−q

∫ 1

u=q
VaRu(L)du . (6)

From Definition 1 and (6) it is clear that expected shortfall does not have the same degree of

tail risk as value at risk. Unlike VaR, ES can distinguish between two distributions of future

net worth that have the same quantile but differ otherwise.

A critique of ES is the fact that tail behaviour is taken into account through an averaging

procedure. Medina and Munari [14] claim that averages are poor indicators of risk, thus

making ES a potentially deceiving measure of risk.

The ASRF model is also applicable for expected shortfall, as ES-based capital charges are

portfolio invariant under the same assumptions as VaR-based capital charges [7]. It is thus

possible to derive a version of the Basel Committee’s capital requirement function (5) that is

based on expected shortfall [15]:
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K = LGD

1−q
Φ2

(
Φ−1(PD),−Φ−1(q);

p
R

)
−PD ·LGD, (7)

whereΦ2(·) is the bivariate cumulative normal distribution function.

4 Value at Risk Versus Expected Shortfall

In this section we will compare VaR and ES as credit risk measures, and examine how the

Basel Committee’s capital requirement function is affected by the choice of its underlying

risk measure. We will discuss confidence level calibration, backtesting methods, parameter

sensitivity and the shape of the loss distribution.

4.1 Sub-additivity and Tail Risk

Value at risk only satisfies sub-additivity when the loss distribution belongs to the elliptical

distribution family and has finite variance [11]. Yamai and Yoshiba provide a simple exam-

ple1 of how the tail risk of VaR may result in serious practical problems in credit portfolios. A

modified version of this example follows: first, suppose a bank holds a credit portfolio con-

sisting of 100 corporate loans to different firms, each with a one year default probability of 1

percent, and a recovery rate of zero (LGD=100 %). The exposure at default is $1 million for

each loan. For simplicity, it is assumed that the occurrences of defaults are mutually inde-

pendent. From (1) we have that the expected loss for each loan is $ 10000. Assuming a 1 %

net lending margin ($10000), each loan is thus priced at $20000. This means that the bank

earns $20000 for each firm not defaulting, while it loses $1 million for each defaulting firm.

Thus, the bank loses money if more than one firm defaults in one year, making the proba-

bility of loss approximately 26 % (1− 0.99100 − 100 · 0.9999 · 0.01). As the probability of loss

exceeds 5 %, the 95 % VaR for this diversified investment will have a positive value.

Second, we consider the bank investing the same total amount of $100 million in a large

loan to only one of the firms. For this concentrated investment the probability of loss is only

1 % and the 95 % VaR is thus -$2 million: the loan price. As the probability of default is below

5 %, the potential of default is disregarded at the 95 % confidence level. We also observe that

value at risk is not sub-additive in this case as the VaR of the diversified portfolio is larger

than the VaR for the concentrated portfolio. Table 1 shows the value at risk and expected

1Example 2 in [11].
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shortfall for both the diversified and the concentrated investment. We see that ES is able

to detect the tail risk, resulting in correctly pointing out the concentrated investment as the

most risky investment.

95 % VaR 95 % ES
100 loans $1.06 million $1.52 million
1 loan -$2.0 million $18.4 million

Table 1: 95 % value at risk and expected shortfall for a diversified investment and a concen-
trated investment. Positive numbers correspond to loss, negative numbers indicate profit.

This example shows how value at risk can disregard the increase of potential loss due

to credit concentration. One should therefore always ensure that credit concentration is

limited by complementary measures when using VaR for risk management. In the Basel

Committee’s regulatory framework, this issue is addressed in Pillar 2 [1].

4.2 Confidence Level

The expected shortfall version of the Basel Committee’s capital requirement function (7) was

derived using the same assumptions as for the VaR version (5). Namely, the assumption of

a normal distribution for the systematic risk factor, which leads to the loss distribution also

being normal. However, a change to the more tail risk sensitive ES would most likely be moti-

vated by real loss distributions being found more heavy-tailed than the normal distribution.

A change to ES would thus probably also result in a model that assumes a more heavy-tailed

loss distribution. In that case, it could be justifiable to apply a confidence level resulting in

a slightly smaller capital requirement, as one could argue the increased tail risk sensitivity

reduces the model risk.

Although the derived ES version of the capital requirement function (7) is based on the

same loss distribution assumptions as the VaR version, the difference between the two risk

measures is significant enough that the two functions behave quite differently. We now try

to determine if it is possible to choose a confidence level for the ES version that makes it

behave like the 99.9 % VaR version (5). Given the definition of ES, this confidence level must

be lower than 99.9 %.

Conducting a least squares fit over the interval PD ∈ (0,1), we find that the confidence

level 99.742 % makes the ES version most similar to the 99.9 % VaR version. There is how-

ever considerable differences for the smallest PD values, as shown in Figure 1. The ES ver-
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Figure 1: The difference between the calculated capital requirement from the ES version with
confidence level 99.742 % and the standard 99.9 % VaR version. Positive values mean that the
ES version results in a higher capital charge. The left graph gives a detailed view for small PD
values, while the right graph shows the whole (0,1) interval.

sion slightly increase capital charges for loans with low probability of default, and slightly

decrease capital charges for loans with probability of default exceeding 21 %. As the Basel

Committee has proposed to apply floors for the PD estimates [16], this may be considered a

good thing.

4.3 Loss Distributions

In this section we will examine how value at risk and expected shortfall depend on the tail of

the loss distribution. Using parameter values from a real data set, we will simulate loss real-

izations by assuming different loss distributions. The simulated loss values are used to create

VaR and ES estimates for different confidence levels. Both the level and the uncertainty of

these estimates are compared. It is also tested how the results depend on the number of

simulations.

4.3.1 Data Set

The data set contains information about corporate loans issued by a Norwegian savings bank

group from March 2015 to January 2016. It contains about a fifth of the group’s total corpo-

rate portfolio from this period, picked randomly. This amounts to a total of 109045 loans.

For each loan, the data set contains numbers for E AD , LGD and PD . The correlations to the

systematic risk factor are also included.

Figure 2 provides some insight about the data set, by displaying density plots of the LGD
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Figure 2: The distribution of LGD and PD values in the data set.

and PD values. We see that most of the loans have low risk. In fact, 90.8 % of the loans have

been assigned a probability of default of 0.05 or less. Only 2.1 % of the loans have a PD value

greater than 0.15 (not included in Figure 2). The majority of the values for loss given default

is also in the low end of the scale, with 68 % of the loans having a LGD value of 0.25 or less.

There are however also a substantial number of loans that have high LGD values, unlike what

is the case for the PD values.

4.3.2 Simulation

We simulate conditional PD values from (2), by using simulated values for X . The PD and

R values used in this calculation are obtained from the data set. For each simulated X value,

the conditional PD is calculated for the data set’s 109045 loans. We want to simulate loss dis-

tributions with different tail weights. This is achieved by simulating the X values by drawing

from different probability distributions. Figure 3 shows the probability density function of

the distributions that will be used to simulate the X values. The standard normal distribu-

tion is used as a baseline. The Cauchy distribution is chosen as it provides different tails

weights by changing the scale parameter. The scale parameters 0.5, 1, 1.5, 2 and 2.5 are used.

The conditional probabilities of default for the Cauchy distribution is calculated using a

modified version of (2):

PD(X ) = FC

(
F−1

C (PD)−X
p

Rp
1−R

)
,

where FC is the cumulative distribution function of the Cauchy(0,1) distribution.

To simulate losses, loan j is considered defaulted if a uniformly distributed random num-
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Figure 3: Probability density function for the Cauchy distribution with five different scale
parameters ranging from 0.5 to 2.5. The probability density function of the standard normal
distribution is also included, with dotted lines.

ber U j ∈ [0,1] is smaller than or equal to the simulated conditional PD value. For the de-

faulted loans, the conditional PDs are multiplied with the associated LGD and E AD values

from the data set to obtain the money amount lost:

L(X ) =
J∑

j=1
1{PD j (X )≥U j } ·LGD j ·E AD j , (8)

where 1{} is the indicator function and J = 109045.

The simulation of loss as shown in (8) is then repeated N times, so that the N different

loss values constitute a representation of the assumed loss distribution. Following Yamai and

Yoshiba [24] we take the VaR estimator at confidence level α as the (N · (α−1)+1)th largest

loss value, and the ES estimator as the mean of the (N · (α−1)+1) largest loss values.

We simulate M sets of N different loss values, to obtain better estimates for VaR and ES,

namely the means of the two sets of M different estimators. This way we can also study the

standard deviations of the two final estimates. The whole procedure is carried out for five

different confidence levels.
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The size of the data set makes this process quite time consuming for big values of N and

M . The simulation code is written in R [25]. Multicore computer processing was enabled to

speed up the process, using the packages foreach, parallel and doParallel.

4.3.3 Results

Figure 4 shows three different simulated loss distributions, each consisting of N loss values

simulated using (8). The systematic risk factor X has been drawn from, respectively, the

Normal(0,1), the Cauchy(0,1) and the Cauchy(0,2.5) probability distributions. We see that

the Cauchy distributed risk factors result in distributions with much heavier tails than for

the normal distributed risk factor. For the Cauchy distributed risk factors, the scale param-

eter does not seem to have a big impact on the tail length. The bigger scale parameter does

however result in a noticeably heavier tail. Table 2 shows the means and relative standard de-
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Figure 4: Simulated loss distributions given different probability distributions for the sys-
tematic risk factor. From the top: Standard normal distribution, Cauchy distribution with
scale parameter 1 and scale parameter 2.5. All three distributions consist of N = 5000 simu-
lated loss values. Two different y-axis are used to make the unlikely tail events more visible.

viations of M = 100 VaR and ES estimates produced using the simulation method described
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above, in addition to the percentage difference between the corresponding results for ES and

VaR. Each estimate is calculated using N = 5000 simulated loss values, and is calculated at

five different confidence levels for each of the six loss distributions.

As one would expect, we see from Table 2 that the VaR and ES estimates are most de-

pendent on the confidence level for the most heavy-tailed loss distributions. This applies

especially to the ES estimates, as they are affected by the whole tail regardless of confidence

level. The gap between the VaR and ES values is decreasing for higher confidence levels, as

this causes VaR to take into account a greater part of the distribution function. Since an in-

crease in scale parameter for the Cauchy distribution results in a noticeably heavier tail, but

not a longer tail, the difference between the two risk measures is actually decreasing when

increasing the scale parameter. Note that the largest scale parameters used do result in loss

distributions that are probably more heavy-tailed than what one would realistically expect.

When it comes to the estimates’ relative standard deviation, the results are more varying.

Only the standard normal loss distribution leads to increasing relative SD for higher confi-

dence levels. This is also the only loss distribution that results in the ES estimates having

the highest relative SD for all five confidence levels. This implies that the losses beyond the

VaR quantile level varies more than the quantile level itself, meaning that the ES estimates

require a larger sample size to ensure the same level of accuracy as the VaR estimates. This is

not the case where we have negative values in Table 2c, as this means the VaR estimate has

the highest relative SD. This is the case for all the Cauchy loss distributions when the confi-

dence level is 99 % or higher. The reason being that these loss distributions are so long-tailed

that the largest simulated losses do not vary much between each simulation set.

The most notable result from Table 2 is that the difference between value at risk and ex-

pected shortfall is highly dependent on the loss distribution. As mentioned in Section 4.3.1,

the closest equivalent to the 99.9 % VaR is a 99.742 % ES. For the 99 % VaR, the closest equiv-

alent is 97.465 %. Thus, it does not make sense to compare the mean and relative standard

deviation of the 99.9 % VaR with the corresponding numbers for the 99.9 % ES, and so on.

Considering this, ES has the lowest relative SD also for the standard normal loss distribution.

Appendix A shows how the number of simulations, N , affects the relative standard devia-

tions of the VaR and ES estimates. A graphic representation of a selection of these results are

shown in Appendix B. As one would expect, the relative SD decreases when you increase the

number of simulations. The size of this reduction appears to be about the same for both the
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VaR Mean (billion NOK) Relative SD

Dist\CL 0.95 0.975 0.99 0.997 0.999 0.95 0.975 0.99 0.997 0.999
Normal(0,1) 7.150 8.844 11.266 14.528 17.367 0.020 0.025 0.038 0.046 0.083
Cauchy(0,0.5) 3.407 4.232 9.969 49.370 87.391 0.010 0.047 0.161 0.203 0.168
Cauchy(0,1) 4.216 7.916 28.724 78.021 111.764 0.033 0.094 0.192 0.138 0.071
Cauchy(0,1.5) 5.703 12.699 47.093 95.243 116.444 0.061 0.123 0.150 0.100 0.029
Cauchy(0,2) 7.627 20.165 59.256 104.599 118.500 0.069 0.162 0.108 0.079 0.010
Cauchy(0,2.5) 9.804 28.666 68.016 111.612 119.038 0.067 0.132 0.077 0.051 0.004

(a) Value at Risk

ES Mean (billion NOK) Relative SD

Dist\CL 0.95 0.975 0.99 0.997 0.999 0.95 0.975 0.99 0.997 0.999
Normal(0,1) 9.764 11.619 14.163 17.504 20.256 0.024 0.030 0.041 0.066 0.092
Cauchy(0,0.5) 12.017 20.228 40.833 80.496 105.006 0.103 0.120 0.136 0.115 0.093
Cauchy(0,1) 20.506 35.335 66.161 102.409 116.822 0.092 0.100 0.096 0.070 0.026
Cauchy(0,1.5) 28.172 47.888 80.862 110.684 118.442 0.081 0.085 0.070 0.040 0.009
Cauchy(0,2) 34.977 57.992 89.703 115.064 119.077 0.084 0.083 0.061 0.025 0.003
Cauchy(0,2.5) 41.637 66.734 96.889 117.241 119.248 0.068 0.065 0.050 0.017 0.001

(b) Expected Shortfall

100 · (ES-VaR)/VaR Mean Relative SD

Dist\CL 0.95 0.975 0.99 0.997 0.999 0.95 0.975 0.99 0.997 0.999
Normal(0,1) 36.6 31.4 25.7 20.5 16.6 19.5 21.7 9.8 43.4 11.4
Cauchy(0,0.5) 252.7 378.0 309.6 63.0 20.2 987.2 154.9 -15.9 -43.2 -44.8
Cauchy(0,1) 386.3 346.4 130.3 31.3 4.5 176.8 6.9 -50.1 -49.7 -63.7
Cauchy(0,1.5) 394.0 277.1 71.7 16.2 1.7 34.1 -30.8 -53.7 -60.3 -68.7
Cauchy(0,2) 358.6 187.6 51.4 10.0 0.5 21.9 -48.5 -43.2 -68.7 -67.1
Cauchy(0,2.5) 324.7 132.8 42.4 5.0 0.2 1.1 -51.1 -34.5 -67.9 -69.5

(c) Percentage difference

Table 2: The mean and relative standard deviation of M = 100 VaR and ES estimates, for
different confidence levels (CL). Each estimate is calculated using N = 5000 simulated loss
values, simulated using the probability distribution indicated in the leftmost column for the
systematic risk factor. The percentage difference between the corresponding ES and VaR
results is also shown.

VaR and ES estimates, even if the levels differ. The relative reduction thus being largest for

the estimates with the smallest relative SD. However, do still keep in mind that ES must have

a smaller confidence level than VaR if the two risk measures are to result in the same capital

charge.

To summarize, this section shows that the difference between value at risk and expected

shortfall is highly dependent on the loss distribution.
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4.4 Backtesting

Backtesting is a method used for model validation, where statistical procedures are used to

compare actual losses to former risk measure forecasts. We will compare backtesting for

value at risk and expected shortfall, with respect to both theoretical properties and practical

implementation.

4.4.1 Elicitability

Gneiting [17] proved in 2010 that expected shortfall is not elicitable, as opposed to value at

risk. This discovery led many to erroneously conclude that ES would not be backtestable,

see for instance [18]. Elicitability is defined as follows [19]:

Definition 2 (Elicitability). A statistic φ(Y ) of a random variable Y is said to be elicitable if it

minimizes the expected value of a scoring function S:

φ(Y ) = argmin
x

E [S(x,Y )].

If you want to compare different forecasting procedures, this is typically done by using a

scoring function (error measure), such as the absolute error or the squared error, which is

averaged over forecast cases. Thus, the performance criterion takes the form [17]

S̄ = 1

n

n∑
i=1

S(xi , yi ), (9)

where xi are point forecasts, the yi are the corresponding realizations and S is the scoring

function. Most scoring functions are negatively oriented, that is, the smaller, the better.

Thus, we favour the forecasting procedure that minimizes (9).

In simple terms, Definition 2 says that a statistic is elicitable if there exists a scoring

function S that makes this statistic the best forecasting procedure according to (9). The

mean and the median represent popular examples, minimizing the mean square and ab-

solute error, respectively. The q th quantile, hence VaR, is elicitable with the scoring function

S(x, y) = (1{x≥y} −q)(x − y), where 1{} is the indicator function [19].

It turns out that even if ES is not elicitable, it is still ’2nd order’ elicitable in the following

sense [20]:

Definition 3 (Conditional Elicitability). A statistic φ(Y ) of a random variable Y is called con-

ditionally elicitable if there exist two statistics π̃(Y ) and π(Y ) such that
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φ(Y ) =π (Y , π̃(Y )) ,

where π̃(Y ) is elicitable and π(Y ) is such that π(Y ,c) is elicitable for all c ∈R.

Conditional elicitability is a helpful concept for the forecasting of risk measures which

are not elicitable. Due to the elicitability of π̃(Y ) we can first forecast π̃(Y ) and then, in a

second step, regard this result as fixed and forecast π(Y ,c) due to the elicitability of π(Y ).

With regard to backtesting and forecast comparison, conditional elicitability offers a way of

splitting up a forecast method into two component methods and separately backtesting and

comparing their forecast performances [20]. This applies to ES, as it is simply a mean of

quantiles, and both the quantiles and the mean are elicitable.

4.4.2 Practical implementation

A popular backtesting method for value at risk is based on the following violation process:

It (q) = 1{L(t )>VaRq (L(t ))},

where 1{} is the indicator function and t denotes the time period.

Christoffersen [21] shows that VaR forecasts are valid if and only if the violation process

It (q) satisfies the unconditional coverage hypothesis: E [It (q)] = 1−q in addition to It (q) and

Is(q) being independent for s 6= q . Under these two conditions, the violations are indepen-

dent and identically distributed Bernoulli random variables with success probability 1− q .

Hence, the number of violations has a Binomial distribution. The unconditional coverage

hypothesis can be tested by comparing the fraction of violations to the VaR confidence level,

using a standard likelihood ratio test.

Backtesting ES does not have to be more complicated than backtesting VaR. Tasche et

al. [20] proposes a backtesting method for ES that is as simple as the VaR violation method,

based on the following approximation:

ESq (L) = 1

1−q

∫ 1

u=q
VaRu(L)du

≈ 1

4

[
VaRq (L)+VaR0.75q+0.25(L)+VaR0.5q+0.5(L)+VaR0.25q+0.75(L)

]
. (10)

If the four different VaR values in (10) are successfully backtested, then also the estimate of
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ESq (L) can be considered reliable subject to careful manual inspection of the observations

exceeding VaR0.25q+0.75(L). These tail observations must at any rate be manually inspected

in order to separate data outliers from genuine fair tail observations.

In practise, backtesting of credit risk models can be quite problematic. The infrequent

nature of default events makes it difficult to collect enough relevant data, especially for the

tail of the loss distribution. The long time horizons further complicate the data collection.

The backtesting approach based on (10) is attractive not only for its simplicity but also be-

cause it illustrates the fact that ES backtesting requires more data than the VaR backtesting,

since loss beyond the VaR level is infrequent, thus the average of them is hard to estimate

accurately [11]. For market risk, the Basel Committee uses a similar backtesting approach

for a 97.5 % ES, which is based on testing VaR violations for the 97.5 % and 99 % confidence

levels [2].

Acerbi and Szekely [19] have recently argued that elicitability has to do with model selec-

tion and not with model testing, and is therefore irrelevant for the choice of a regulatory risk

standard. They show that expected shortfall is directly backtestable, by introducing three

model-free, nonparametric backtesting methods for ES. These tests generally require more

storage of information than typical VaR tests, but introduce no conceptual limitations or

computational difficulties of any sort. Compared to these test procedures, the simple back-

testing method based on (10) has the advantage of not relying on Monte Carlo simulation for

the statistical test [20].

4.5 Parameter Sensitivity

We will examine how the uncertainty of the banks’ parameter estimates affects the output

from the Basel Committee’s capital requirement function, using both value at risk and ex-

pected shortfall. This is carried out by simulating LGD and PD values. The estimation un-

certainty of these two parameters is represented by the relative standard deviation of the

probability distributions they are sampled from.

4.5.1 Simulating LGD Values

The simulation method used for the LGD values is based on a model for recovery rates (1−
LGD) developed by Jon Frye [22]. Frye’s model adapts some of Michael Gordy’s work, and

lets the recovery rate r depend on the systematic risk factor X :
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r =µ+σhX +σ
√

1−h2Z , (11)

where h is the correlation between the recovery rate r and the systematic risk factor X , and

Z is a standard normal variable independent of X .

Following a proposal from Schönbucher 2, we apply a logistic transformation F (Y ) =
exp(Y )

1+exp(Y ) on (11), to limit the r values (and thus also the LGD values) to the interval [0,1].

As for the capital requirement function (5) we use x = −Φ−1(0,999) = Φ−1(0,001). This

gives the following distribution for the LGD values:

r ∼ N
(
µ+σhΦ−1(0,001),σ2 (

1−h2)) ,

�LGD = 1−F (r ) = 1− exp(r )

1+exp(r )
.

(12)

4.5.2 Simulating PD Values

Over a time period, a firm either meets the loan terms or defaults. This makes it natural to

model the number of default occurrences m by applying a binomial distribution:

m ∼ Bi n(n,PD),

where PD is chosen as the bank’s estimated value for the unconditional probability of de-

fault, and n is the number of simulations.

After completing the n simulations, the probability of default is estimated as

P̂D = m

n
.

The simulated P̂D values will thus be centered around the bank’s estimate of PD , and the de-

viations from this value represents the uncertainty in the bank’s PD estimate. The variance

of P̂D is inversely proportional to the number of simulations:

Var
(
P̂D

)= Var
(m

n

)
= 1

n2
Var(m) = PD(1−PD)

n
.

2See [23], pages 147-150.
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4.5.3 Calculation of Parameter Sensitivity

To simulate �LGD values representing different degrees of estimation uncertainty, five differ-

ent values are used for σ in (12). The chosen values range from 0.05 to 0.45, with increments

of 0.1. h is kept constant at 0.2. The P̂D values are simulated in a similar way, where five

different values of n represent varying degrees of estimation uncertainty. For each of the five

σ values there are simulated N different �LGD values, and N different P̂D values are simu-

lated for each of the five n values. These five values for n are chosen so that the five different

series of P̂D values have the same relative standard deviations as the corresponding five dif-

ferent series of �LGD values . This is achieved by selecting n values that satisfy the following

equation:

√
Var

(
P̂D

)
PD

=
√

1−PD

nPD
=σ�LGD rel =⇒ n = 1−PD(

σ�LGD rel

)2 PD
,

whereσ�LGD rel is the relative standard deviation of a �LGD value series, and PD is the expected

value of P̂D . Figure 5 shows how the distributions of the simulated values depends on σ and

n.
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Figure 5: The distributions of 10000 simulated LGD and PD values, with expected values
of respectively 0.45 and 0.01. The LGD values shown are simulated with three lowest σ val-
ues, and the PD values are simulated with the three n values that result in the same relative
standard deviations.

The simulated �LGD and P̂D values are used pairwise to calculate the corresponding cap-

ital requirement values. The loan maturity is chosen to one year, so that the adjustment

factor M A equals one. The correlation factor is chosen to be calculated as for loans to firms

with annual revenue above 50 million euros. These choices result in the capital requirement
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function (5) taking the following form

K̂ = �LGD ·Φ


Φ−1(P̂D)+Φ−1(0,999) ·

√
0.24−0.12

(
1−e−50·P̂D

1−e−50

)
√

0.76−0.12
(

1−e−50·P̂D

1−e−50

)
− P̂D · �LGD . (13)

The corresponding version of the expected shortfall capital requirement function (7) takes

the form

K̂ =
�LGD

1−q
·Φ2

Φ−1(P̂D),−Φ−1(q);

√√√√0.24−0.12

(
1−e−50·P̂D

1−e−50

)− P̂D · �LGD . (14)

The capital requirements (13) and (14) are calculated for all 25 possible combinations of σ

and n. At last, the relative standard deviation of the calculated capital requirements for each

of these combinations are computed:

σK rel =

√√√√∑N
i=1

(
Ki −K

)2

N −1

/
K .

Since (13) and (14) are proportional to �LGD , it is not interesting to vary the expected value

of �LGD , as it will only result in a linear scaling of the capital requirement’s variation. The

expected value of the simulated �LGD values is set to 0.45 for all the different σ values. To

achieve this, for each different σ value in (12), we must calculate a µ which gives this desired

expectation value. However, several different expectation values will be used for the P̂D sim-

ulations, to see how this impacts the resulting standard deviations of the calculated capital

requirements.

4.5.4 Results

Figure 6 shows the relative standard deviation of the simulated capital requirement for 99.9 %

value at risk, for different expectation values for PD. For each of the different expectation val-

ues, there are 25 different values for the standard deviation of the capital requirement, which

corresponds to different combinations of the five levels of uncertainty for both the PD and

LGD simulations. As one would expect, the capital requirement’s uncertainty increases with

increasing parameter uncertainty. What we are interested in, is which of the two parameters’

uncertainty that affects the capital requirement the most.

We see from Figure 6 that the parameter uncertainties have different impact depending
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Figure 6: Relative standard deviation of the 99.9 % VaR capital requirement (13), given the
relative standard deviation for PD and LGD. Calculated for six different expectation values
of PD, with the expected value of LGD equal to 0.45. Using N = 10000 simulations for each
calculation.

on the the expected value of the simulated PD values. When the expected probability of

default is close to 0.3, the capital requirement uncertainty is almost only influenced by the

uncertainty of the simulated LGD values. The uncertainty of the PD values plays a greater

role when the expectation of PD is either small or above 0.4. But even for E [PD] = 0.0005

the LGD uncertainty is most influential, as we see that the rightmost column is a slightly

darker red than the upper row. However, when the expected value of the probability of de-

fault exceeds 0.7, the PD uncertainty is extremely influential, and the standard deviation of

the capital requirement increases significantly. This can be seen in Figure 7, where the ex-

pected value of the simulated PD values are 0.8. Note that the colors in this figure correspond

to larger relative standard deviations than in Figure 6.

Looking at (13) it is clear that e−50·P̂D is the part of the capital requirement function that

explains the influence of the PD values’ uncertainty when the expectation of PD is small.

For expectation values of PD close to zero, this part of the function is sensitive to very small
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Figure 7: Relative standard deviation of 99.9 % VaR capital requirement (13), given the rela-
tive standard deviation for PD and LGD. Calculated for E [PD] = 0.8 and E [LGD] = 0.45, using
N = 10000 simulations.

changes in the PD value. This sensitivity gradually becomes smaller for larger PD values, and

for PD values larger than 0.1 this part of the function will remain approximately constant.

The function partΦ−1(P̂D) is particularly sensitive when the expected value of PD is close to

zero or one.

The major impact on the capital requirement’s uncertainty for large expectation values

of PD is due to the last term in (13). For large PD values, the value of the last term becomes

large enough so that its variation affects the variation of the whole function.

When the same simulation method was carried out using expected shortfall, the confi-

dence level was chosen to 99.742 %, as it was shown in Section 4.3.1 that this confidence

level results in the capital requirement closest to the 99.9 % VaR. For large expected values

of PD, there were virtually no difference in the capital requirement’s uncertainty between

the ES and VaR approach. For smaller expected values of PD the ES approach resulted in

reduced uncertainty, as shown in Figure 8. We see that the relative reduction is largest when

the LGD uncertainty is low and the PD uncertainty is high. This reduction is however only a

few percent, so there is not that much of a difference between the two approaches regarding

the parameter sensitivity.

Because the relative reduction of the capital requirement’s relative standard deviation is

largest for the combination of the lowest LGD uncertainty and the highest PD uncertainty,
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Figure 8: Percentage reduction in the relative standard deviation of the capital requirement
by switching from 99.9 % VaR (13) to 99.742 % ES (14), given the relative standard deviation
for PD and LGD. Calculated for three different expectation values of PD, with the expected
value of LGD equal to 0.45. Using N = 10000 simulations for each calculation.

we decide to calculate the reduction for this case using different confidence levels for the

expected shortfall. Figure 9 shows the results for confidence levels ranging from 99.4 % to

99.9 %. We see that the relative uncertainty reduction is largest for the combination of high

confidence levels and low PDs. The combination of large PDs and smaller confidence levels

also stands out. We see that switching to ES also increases the uncertainty in a few cases,

especially for large PD values at the 99.9 % confidence level.

As both the VaR version (13) and the ES version (14) of the capital requirement function

are based on the same assumptions and models, the only distinction between the two ver-

sions is the risk measure. The results in this section thus show how a credit model’s param-

eter sensitivity can depend on the chosen risk measure. In Section 4.2 we saw from Figure 1

that the 99.742 % ES version resulted in a higher capital charge than the 99.9 % VaR version

for PD values below 0.21, with considerable increasing relative difference for PD values be-

low 0.01. Figure 8 shows that the lowest PD values also cause the most notable difference

between the VaR and ES version when it comes to the relative standard deviation of the cap-

ital requirement. This is of course no coincidence. As the difference between the ES and

VaR version increases for the small PD values, the ES version will result in a smaller change

in capital charge than the VaR version for the same change in these PD values. The ES ver-

sion thus makes the capital charge depend on these values in a more stable manner, thereby

reducing the relative standard deviation.

There could be both advantages and disadvantages with a capital requirement function

that is less sensitive to the PD parameter in the lowest end of the scale. On the plus side,
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Figure 9: Percentage reduction in the capital requirement’s relative standard deviation by
switching from 99.9 % VaR to ES with different confidence levels. The results are shown for
different expectation values for the probability of default. The relative standard deviation of
the simulated PD and LGD values is set constant to 23 % and 3 % respectively. The expected
value of LGD is equal to 0.45. Using N = 10000 simulations for each calculation.

one could argue that this to some degree reduces the banks’ incentive to estimate artificially

low PD values. At the same time this might be viewed as counterproductive, since the fun-

damental idea behind the IRB approach is a more risk sensitive capital charge. In case of a

change of risk measure from VaR to ES, one would possibly also make some changes to the

model assumptions, particularly the shape of the loss distribution function. A change to the

more tail risk sensitive ES is essential for more heavy-tailed loss functions.

5 Conclusion

The Basel Committee’s minimum capital requirement function for banks’ credit risk is based

on the risk measure value at risk (VaR). The paper performs a statistical and economic anal-

ysis of the consequences of replacing VaR with Expected Shortfall (ES), a switch that has

already been set in motion for market risk. This analysis uses both theoretical simulations

and real data from a Norwegian savings bank group’s corporate portfolio.

By correctly calibrating the ES confidence level, it will produce approximately the same

capital requirement for credit risk as with VaR, where the largest difference occurs for loans

with low default probability. A switch from VaR to ES will involve some clear conceptual im-



5 CONCLUSION 26

provements, primarily a better ability to accurately capture tail risk. ES is also sub-additive

in general, unlike VaR, so that it always reflects the positive effect of diversification. There

has been some uncertainty regarding the backtesting abilities of ES, but we show that back-

testing of ES does not have to be more complicated than backtesting VaR. The parameter

sensitivity and estimation stability of ES have also been examined, and appear to be similar

as for VaR, if not slightly less sensitive and more stable.

This paper shows that the difference between ES and VaR is highly dependent on the

assumed loss distribution. Since ES considers the entire loss distribution, it is more suitable

for credit risk models with more heavy-tailed loss distributions than the normal distribution.

For such distributions, we show that the estimation stability of ES is clearly better than for

VaR.

The advantages of switching to ES must be weighed against costs and challenges associ-

ated with a transition to this risk measure, especially concerning practical implementation.

However, as this risk measure switch has already been set in motion for market risk, banks

are going to have practical experience with ES before this switch potentially also happens

for credit risk. In addition, ES is after all based on VaR, so we are talking about adjusting the

existing system, not creating a new system from scratch. Taking all this into consideration,

the conclusion is that the findings of the paper support a switch from VaR to ES for credit

risk modelling.
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A

VaR Normal(0,1) Cauchy(0,0.5)

N\CL 0.95 0.975 0.99 0.997 0.999 0.95 0.975 0.99 0.997 0.999
1000 0.041 0.056 0.070 0.088 0.117 0.020 0.105 0.397 0.532 0.430
2500 0.030 0.038 0.053 0.067 0.090 0.014 0.060 0.320 0.321 0.255
5000 0.020 0.025 0.038 0.046 0.083 0.010 0.047 0.161 0.203 0.168
10000 0.013 0.019 0.025 0.037 0.043 0.007 0.038 0.120 0.168 0.125

Cauchy(0,1) Cauchy(0,1.5)

N\CL 0.95 0.975 0.99 0.997 0.999 0.95 0.975 0.99 0.997 0.999
1000 0.078 0.259 0.396 0.292 0.228 0.133 0.376 0.373 0.243 0.170
2500 0.051 0.164 0.327 0.173 0.149 0.083 0.170 0.192 0.139 0.084
5000 0.033 0.094 0.192 0.138 0.071 0.061 0.123 0.150 0.100 0.029
10000 0.025 0.062 0.139 0.104 0.036 0.039 0.088 0.109 0.077 0.019

Cauchy(0,2) Cauchy(0,2.5)

N\CL 0.95 0.975 0.99 0.997 0.999 0.95 0.975 0.99 0.997 0.999
1000 0.147 0.274 0.238 0.193 0.117 0.176 0.288 0.192 0.130 0.089
2500 0.100 0.201 0.144 0.113 0.058 0.098 0.172 0.120 0.077 0.029
5000 0.069 0.162 0.108 0.079 0.010 0.067 0.132 0.077 0.051 0.004
10000 0.046 0.104 0.055 0.057 0.005 0.059 0.100 0.055 0.035 0.001

(a) Value at Risk

ES Normal(0,1) Cauchy(0,0.5)

N\CL 0.95 0.975 0.99 0.997 0.999 0.95 0.975 0.99 0.997 0.999
1000 0.049 0.061 0.081 0.112 0.140 0.266 0.310 0.348 0.325 0.293
2500 0.037 0.046 0.062 0.088 0.116 0.172 0.200 0.219 0.190 0.162
5000 0.024 0.030 0.041 0.066 0.092 0.103 0.120 0.136 0.115 0.093
10000 0.017 0.022 0.029 0.041 0.057 0.089 0.104 0.114 0.087 0.060

Cauchy(0,1) Cauchy(0,1.5)

N\CL 0.95 0.975 0.99 0.997 0.999 0.95 0.975 0.99 0.997 0.999
1000 0.204 0.218 0.205 0.166 0.138 0.215 0.223 0.192 0.137 0.108
2500 0.152 0.164 0.147 0.109 0.075 0.104 0.110 0.089 0.069 0.037
5000 0.092 0.100 0.096 0.070 0.026 0.081 0.085 0.070 0.040 0.009
10000 0.066 0.072 0.069 0.047 0.012 0.059 0.064 0.052 0.032 0.005

Cauchy(0,2) Cauchy(0,2.5)

N\CL 0.95 0.975 0.99 0.997 0.999 0.95 0.975 0.99 0.997 0.999
1000 0.157 0.161 0.133 0.093 0.061 0.156 0.145 0.110 0.071 0.049
2500 0.111 0.112 0.088 0.053 0.024 0.092 0.087 0.065 0.032 0.013
5000 0.084 0.083 0.061 0.025 0.003 0.068 0.065 0.050 0.017 0.001
10000 0.055 0.056 0.043 0.019 0.002 0.052 0.047 0.037 0.008 0.000

(b) Expected Shortfall

Table 3: The relative standard deviations of M = 100 VaR and ES estimates, for different con-
fidence levels (CL) and different number of simulated loss values, N , used for each estimate.
The loss values are simulated using the probability distribution indicated in the table head-
ers for the systematic risk factor.



B 28

B

0.025

0.050

0.075

0.100

1000 2500 5000 10000
N

R
el

at
iv

e 
st

an
da

rd
 d

ev
ia

tio
n

0.975 0.99 0.997 0.999

ES VaR

(a) Normal(0,1)

0.00

0.05

0.10

0.15

0.20

1000 2500 5000 10000
N

R
el

at
iv

e 
st

an
da

rd
 d

ev
ia

tio
n

0.975 0.99 0.997 0.999

ES VaR

(b) Cauchy(0,2.5)

Figure 10: Relative standard deviation of the VaR (dotted lines) and ES (solid lines) estimates,
for N simulations. 99.9 % and 99 % confidence levels are used for VaR, while 99.7 % and
97.5 % confidence levels are used for ES. The estimates are calculated from simulated loss
values, from both a standard normal distribution and a Cauchy(0,2.5) distribution.
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