Derivatives and Risk Management in Commodity Markets

Topic 1: Introduction to futures and forwards

Bård Misund, Professor of Finance University of Stavanger uis.no

1/13/2020

About the author

Social Media: LinkedIn, Google Scholar, Twitter, YouTube, Vimeo, Facebook Employee Pages: UiS (Nor), UiS (Eng), NORCE1, NORCE2 Personal Webpages: bardmisund.com, bardmisund.no, UiS Research: Researchgate, IdeasRePEc, Publons, Orcid, SSRN, Others: Encyclopedia, Cristin1, Cristin2, Brage UiS, Brage USN, Nofima, FFI, SNF, HHUIS WP, Risk Net Op-Eds: Nationen, Fiskeribladet, Nordnorsk Debatt 1

Topics

- Introduction to derivatives
- Introduction to forwards and futures

Introduction to options

- Payoff/profit
- Properties of options
- Portfolio of options / trading strategies

Introduction: Objectives

- What is a derivative?
- How are they traded?
- What are forward contracts?
 - What are payoff diagrams/profiles?
- What are futures contracts?
- What are options?
- Who are the participants in the derivatives markets?

Learning objectives: Mechanics of Futures Markets

- What are the major markes for futures contracts?
- How do you take a position in a futures contract?
 - Positions, Quotes, Types of orders
 - Margins, clearing, Profit and Loss (PnL or P&L)
- What are typical specifications (specs) in a Futures contract?
- What do we mean by convergence of futures price to spot prices?
- What is the difference between a forward and a futures contract?

Learning objectives: Characteristics of options

- Know the difference between forwards/futures and options wrt
 - Contractual specification
 - Payoff function and diagrams
- Know what moneyness means
- Know the difference between European and American options
- Know the 6 most important factors affecting the value of options, and especially the direction they affect the option values

Learning objectives: Option payoff/profit & option strategies

- Know the difference between payoff functions, payoff diagrams and profit diagrams
- Know the most common option strategies and why they are used

Introduction to derivatives

University of

Stavanger

Derivatives

- Derivatives as an asset class have become increasingly important in the last 25-30 years
- But, has had a much longer history than that
- Futures and options are traded actively on many exchanges throughout the world
- Many types of forward contracts, swaps, options and other derivatives are regularly traded by financial institutions, fund managers and corporate treasuries in the over-the-counter market (OTC)

Introduction: topics

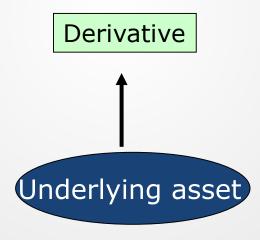
- Markets
 - Exchange traded markets
 - Over-the-counter markets (OTC)
 - Structured products
- Types of derivative contracts
 - Forward contracts
 - Futures contracts
 - Options
- Types of traders
 - Hedgers
 - Speculators
 - Arbitrageurs
- Dangers

University of Stavanger

Derivatives

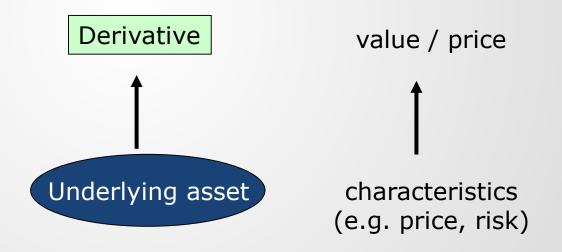
- Exists as separate financial assets, or
- embedded in other products
- included in executive compensation plans

 Derivative: "A derivative can be defined as a financial instrument whose value depends on (derives from) the values of other, more basic, underlying variables



 Derivative: "A derivative can be defined as a financial instrument whose value depends on (derives from) the values of other, more basic, underlying variables

Derivative


Derivative: "A derivative can be defined as a financial instrument whose value depends on (derives from) the values of other, more basic, underlying variables

 Derivative: "A derivative can be defined as a financial instrument whose value depends on (derives from) the values of other, more basic, underlying variables"

The underlying asset

- Stocks (e.g. stock option) & Stock indices
- Bonds (credit derivatives)
- Energy (crude oil, natural gas, power, emissions)
- Commodities
 - Agriculture (grain, pork belly, cattle, sugar, etc).
 - Metals
 - Energy
- Weather (amount of snow, temperature)
- Insurance derivatives

Types of markets

- 1. Exchange traded
- 2. Over-the-counter (OTC)
- 3. Not directly sold (embedded, real options, etc.)

Exchange traded options

- A derivatives exchange is a market where individuals trade standardized contracts that have been defined by the exchange
- Examples
 - Chicago board of trade (CBOT)
 - Chicago mercantile exchange (CME)
 - Chicago board options exchange (CBOE)
 - New York M exchange (NYMEX)
 - (ICE)

Over-the-counter markets (OTC)

- Important alternative to exchanges
- Larger volumes than exchanges
- Telephone and computer linked network of dealers/brokers
 - Financial institutions often act as market makers for the more commonly traded instruments
 - Benifit: more flexible with respect to terms
 - Downside: credit risk

Main types of financial derivatives contracts

- Forward
- Futures
- Options
- Swaps

Introduction to forwards and futures

Forward contract

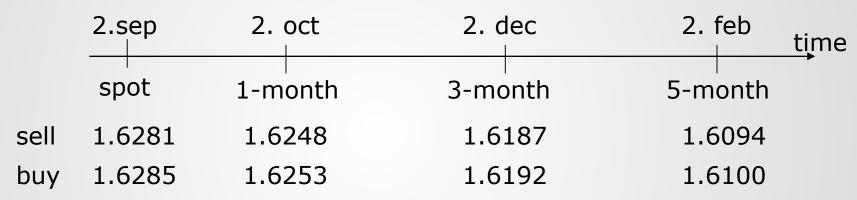
- A *forward contract* is an agreement (contract) to buy or sell an asset at a certain future time for a certain price
- is an agreement (Forward contract)
- buy / sell an asset (trade Underlying asset)
- at future time (Maturity)
- for a certain price (Forward price)

A spot contract is an agreement to buy/sell an asset today

University of Stavanger

Forward contracts

Spot/forward quotes for USD/GBP foreign exchange rate (FX)


Delivery (maturity)	Bid price	Offer price
Spot	1.6281	1.6285
1 month forward	1.6248	1.6253
3-month forward	1.6187	1.6192
5-month forward	1.6094	1.6100

- GBP = British pounds
- USD = US dollar

Bid = number of dollars you receive when you sell 1 pound

Offer = number of dollars you have to pay to buy 1 pound

Forward contracts

Forward contracts

- Example 1
- you have 1000 pounds you want to exchange for dollars today. How many dollars will you receive?
- The spot Bid price is 1.6281
- USD = 1.6281 USD/GBP x 1000 GBP = 1628.1 USD

Forward contracts

- Example 2
- you have 1000 dollars you want to exchange for pounds 3 months from now. How many pounds will you have to pay?
- You need the 3-month offer price for USD/GBP
- This is the same as the 3-month bid price for GBP/USD
- The 3-month bid price is 1.6187
- GBP = 1000 USD / 1.6187 USD/GBP = 617.8 GBP

Payoffs from forward contracts

 Example: you enter into a forward contract to buy 1 million GBP in 6 months time

Alternative 1

buy forward at rate 1.6100 USD/GBP

Alternative 2

wait 6 months, and buy spot at price X (uncertain)

Payoffs from forward contracts

If the spot rate rose to 1.700 after 6 months, what is the forward contract worth?

Alternative 1:

- buy forward at 1.6000
- pay 1 610 000 USD in 6 months and receive GBP 1 000 000
- you could then sell 1 000 000 GBP you would then receive 1 700 000 USD
- profit (mark-to-market) = 1 700 000 1 610 000 = 90 000 USD
- Alternative 2: no profit (payoff = 0)

Payoff diagrams

The payoff from a long position in a forward contract is:

 $S_T - F$

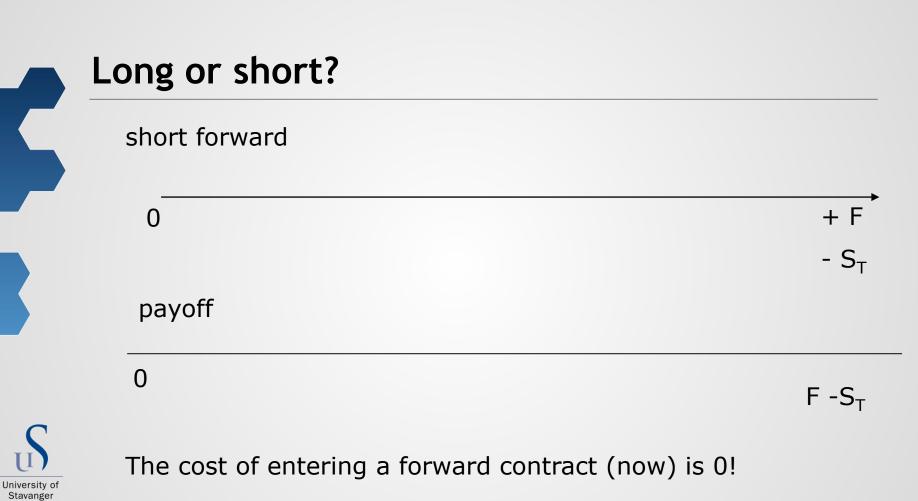
The payoff from a short position in a forward contract is:

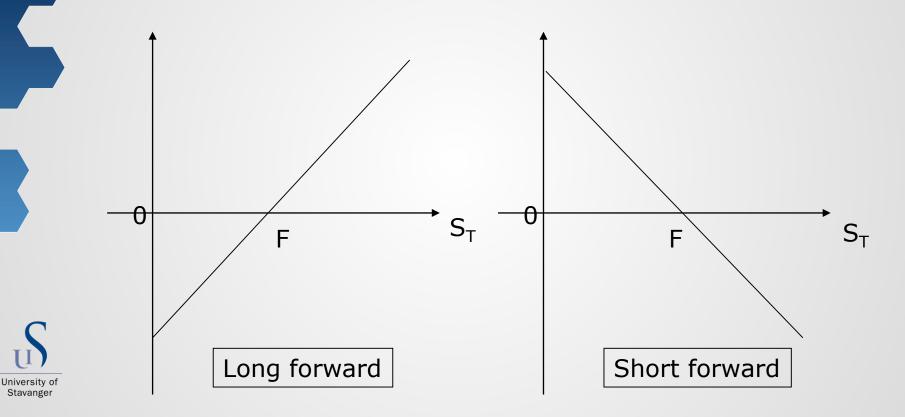
 $F - S_T$

 S_T = spot price at maturity F = forward price

Long or short?

- Long: you have bought something
- Short: you have sold something


 Long forward: you are buying something in the future and are paying the forward price


 Short forward: you are selling something in the future and are receiving the forward price

University of Stavanger

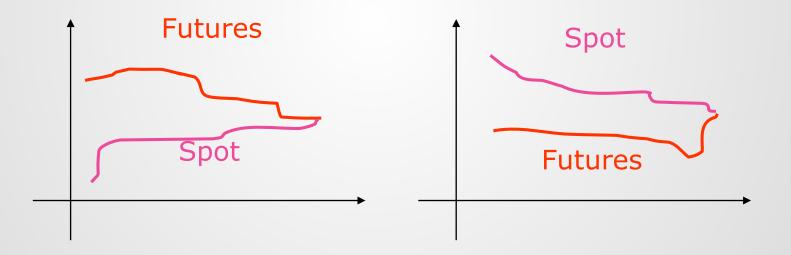
Payoff diagram (exposure towards the underlying asset)

Futures contracts

- A futures contract is an agreement between two parties to buy or sell an asset at a certain time in the future for a certain price (same as forward contract)
- Traded on an exchange
- Standardized contract
- Market clearing mechanism

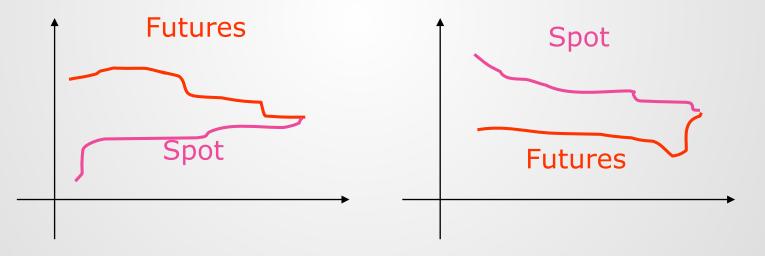
Closing out positions

- Financial settled in cash
- Physical settled by physical delivery
- Most settled in cash
 - long position -> sell same contract (short)
 - short position -> buy same contract (long)


Specification of a futures contract

- The asset (underlying)
- The contract size
- Delivery arrangements
- Delivery month (trading ends before delivery)
- Price quotes
- Price limits and position limits

Convergence of futures price to spot price


 As the delivery period for a futures contract is approached, the futures price converges to the spot price of the underlying asset

University of Stavanger

Convergence of futures price to spot price

- The contracts have to converge, otherwise there is an arbitrage opportunity
- Not the same contract prior to delivery of futures, but become the same contract at delivery

University of Stavanger

- One of the key roles of the exchange is to organise trading so that contract defaults are avoided
- Use margins
- Basically, if the loss exedes the margin, the position is liquidated (position is closed out)

- Example: On August 25th an investor contacts his/her broker to buy 2 Dec'10 WTI (crude oil) futures contracts
- Type of asset: WTI Crude
- Delivery period: December '10 (trading ends in september 2010)
- Size of contract: 1000 US barrels
- Number of contracts: 2
- Futures price: 75.74 USD/bbl
- Initial margin: \$2000/contract
- Maintenance margin: \$1500/contract

University of Stavanger

Total position (size of exposure)

- #contracts x size of contract x futures price
- 2 x 1000 x 75.74 = \$151,480

Initial margin (deposit to margin account)

- #contracts x margin per contract
- 2 x \$2000 = \$4,000

University o Stavanger At the end of the day, the margin account is adjusted to reflect the investor's gain or loss (marking-to-market)

Maintenance margin

- If the margin account falls below the maintenance margin, the investor receives a <u>margin call</u> and is expected to top up the margin account. Extra funds are deposited (variation margin)
- If the investor does not provide the variation margin, the broker closes the position by selling the contract

Example

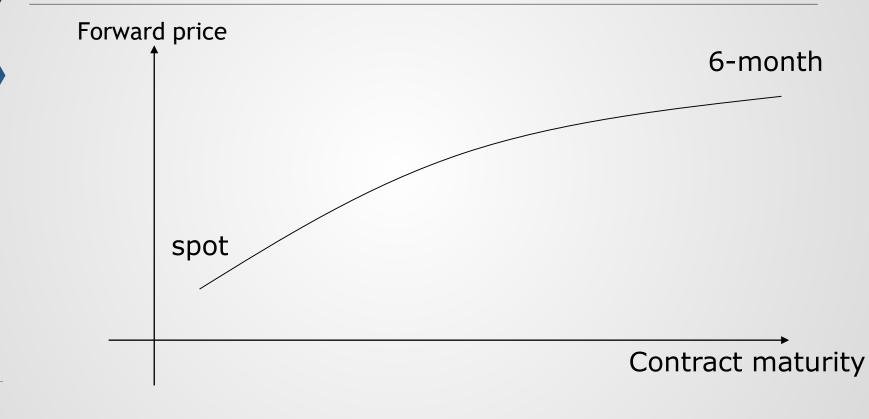
			Daily	Margin	
Day	Oil Price	Position	gains/losses	account	Margin call
0	75.74	151,480	0	4000	
1	75.80	151,600	120	4,120	
2	76.00	152,000	400	4,520	
3	74.50	149,000	-3,000	1,520	2480
4	74.10	148,200	-800	3,200	
5	73.50	147,000	-1,200	2,000	2000
6	75.00	150,000	3,000	7,000	
7	76.00	152,000	2,000	9,000	
8	77.50	155,000	3,000	12,000	
9	79.00	158,000	3,000	15,000	
10	85.00	170,000	12,000	27,000	

Clearing house

The exchange clearing house is an adjunct of the exchange and acts as an intermediary in the futures transaction

Forward vs futures contract

Forward contract	Futures contract
Private contract between two parties	Traded on an exchange
Not standardized	Standardised contract
Usually one specified delivery date	Range of delivery dates
Settled at end of contract	Settled daily
Delivery or final cash settlement usually takes place	Contract is usually closed out prior to maturity
Some credit risk	Virtually no credit risk


Marking to market

- Profit / loss of taking a position in a derivative
- Compared to the market price of the underlying

The forward (futures) curve

University of Stavanger

Exercise: Build your own forward curve

Data:

- www.cmegroup.com for commodities
- www.cboe.com for equity index futures
- <u>finance.yahoo.com</u> for equities, commodities etc..
- What is the shape of the forward curve?
- How do the shapes of forward curves for Natural Gas prices compare to Crude oil prices?

Example: Natural Gas (e.g. Henry Hub front month)

	price quotes (pence/therm)		
	bid	offer	
24/08/2009 Day ahead (spot)	18.00	18.10	
September '10	19.20	19.30	
October '10	25.85	26.05	
November '10	34.60	35.00	

- You decide to go long Sep'10 and short Oct'10
- What are the relevant prices?

Example: Natural Gas (e.g. Henry Hub front month)

		price quotes (pence/therm)		
		bid	offer	
24/08/2009	Day ahead (spot)	18.00	18.10	
	September '10	19.20	19.30	
	October '10	25.85	26.05	
	November '10	34.60	35.00	

- You decide to go long Sep'10 and short Oct'10
- What are the relevant prices?
 - long Sep'10: 19.30 (offer)
 - short Oct'10: 28.85 (bid)
- When do you earn money on these transactions?

University of Stavanger

- What does the Sep'10 price have to be to earn money?
 Sep'10: Ft > 19.30 (bid)
- What does the Oct'10 price have to be to earn money?
 - Oct'10: Ft <28.85 (offer)</p>

Trading forwards/futures 19.30 F_{sep'10,t} 28.85 F_{oct'10,t} Payoff = $28.85 - F_{oct'10,t}$ $Payoff = F_{sep'10,t} - 19.30$

University of Stavanger

One day later the prices are

			price quotes (pence/therm)		
		bid	offer		
25/08/2009					
	September '10	20.20	20.30		
	October '10	23.35	23.55		
	November '10	34.50	34.90		

- What is the profit on your positions?
- Sep'10 payoff = 20.20 19.30 = 0.90 pence/therm
- Oct'10 payoff = 28.85 23.55 = 5.30 pence/therm

Exercise: calculate your own trading profits/losses

- Data: US Energy futures historical data:
- Gas prices
- http://www.eia.gov/dnav/ng/ng_pri_fut_s1_d.htm
- Crude oil prices
- http://www.eia.gov/dnav/pet/pet_pri_fut_s1_d.htm

Introduction to options

Options

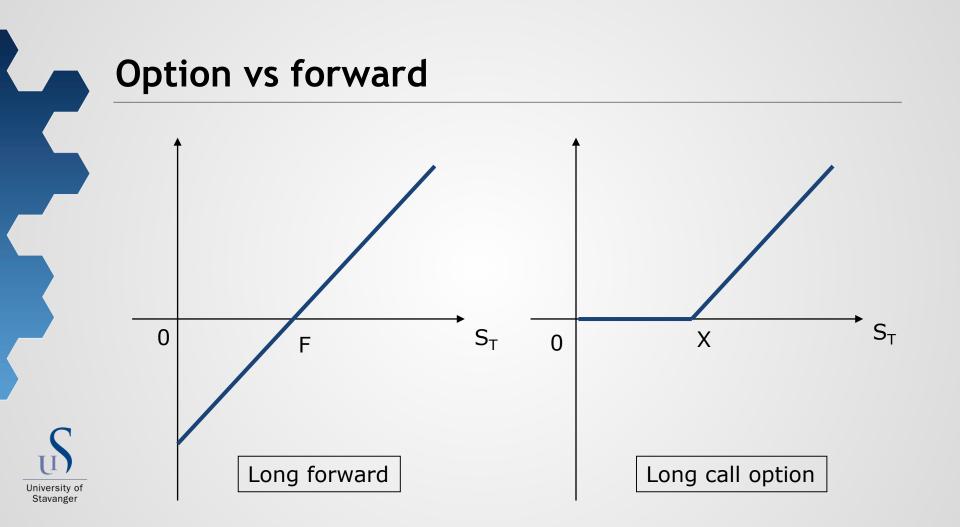
- A forward contract is non-flexible. You have the obligation to buy (long) or sell (short) the underlying some time in the future
- An option is flexible (only long position). You have the right (but not the obligation) to buy or sell the underlying asset at a specific time in the future at a specific price

Options

- A forward contract is non-flexible. You have the obligation to buy (long) or sell (short) the underlying some time in the future
- An option is flexible (only long position). You have the right (1) (but not the obligation) to buy (2) or sell (3) the underlying asset at a specific time in the future (4) at a specific price (5)

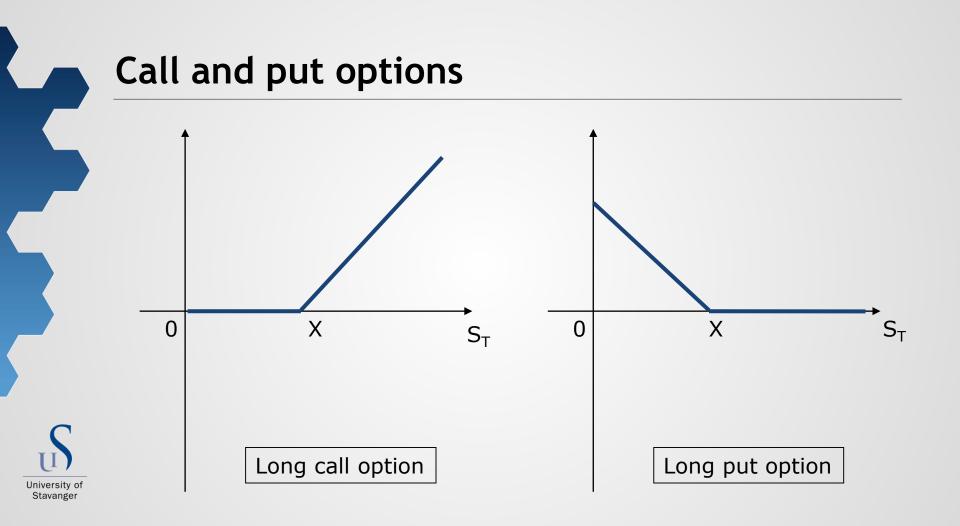
Options

- An option is flexible (only long position). You have the right (1) (but not the obligation) to buy (2) or sell (3) the underlying asset at a specific time in the future (4) at a specific price (5)
- 1. The right but not the obligation (an Option)
- 2. Buy underlying asset (Call option)
- 3. Sell underlying asset (Put option)
- 4. A specific time in the future (Maturity / Exercise date / expiration date)

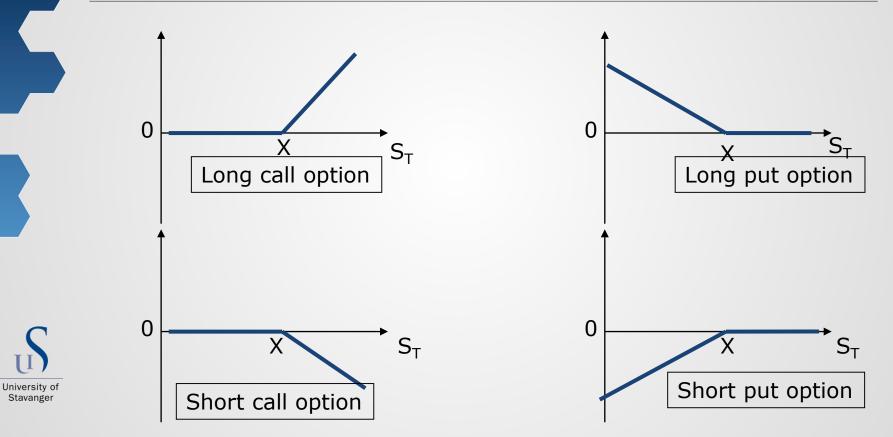

5. A specific price (Exercise price / strike price, X)

Keywords

- Flexibility
- Put/Call
- Long/short
- Payoff
- Maturity / Exercise
- Exercise price
- Moneyness


Payoff

Forward contract (long)


$$S_T - F$$

Option contract (long call)

$$\max(S_T - X, 0)$$

Call and put options (long and short)

Stavanger

Examples

- What is the payoff of a long call (X = 50) if the spot price at maturity is 10, 20, 30, 40, 50, 60, 70, 80, 90, 100?
- What is the payoff of a long put (X = 50) if the spot price at maturity is 10, 20, 30, 40, 50, 60, 70, 80, 90, 100?
- What about a short call and a short put? What is the payoff?

Payoff at maturity

Long call: $\max(S_T - X, 0)$

 $-\max(S_T - X, 0)$ Short call:

Long put: $\max(X - S_T, 0)$

• Short put:
$$-\max(X - S_T, 0)$$

Universit

Maturity

- European options
 - Expiry on a certain date
- American options
 - Expiry before and on a certain date
- Bermuda options

Strike price

- European/American option
 - specific strike price

Asian option

strike price is an average of previous spot prices

Moneyness

- In the money (ITM)
- At the money (ATM)
- Out of the money (OTM)

Types of traders

- Hedgers: use derivatives to reduce risk
- Speculators: use derivatives to bet on the future direction of a market
- Arbitrageurs: take positions in one or more instruments to lock in a profit

These types of traders make up the market

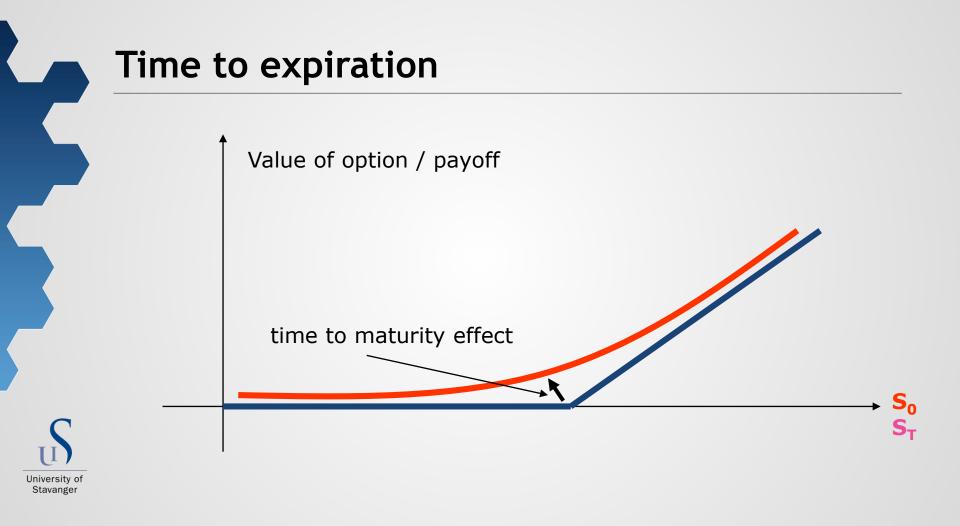
Properties of stock options

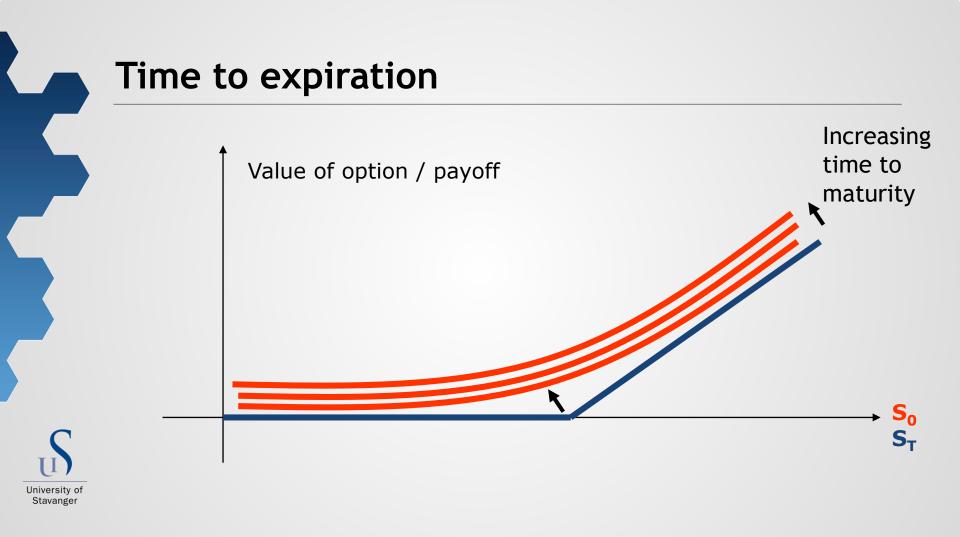
- Factors affecting option prices
- Assumptions and notation
- Upper and lower bounds for option prices
- Put-Call parity
- Early exercise

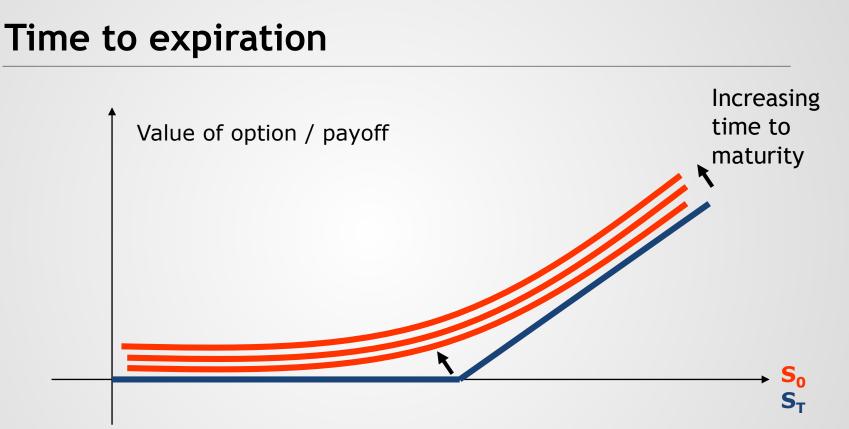
Factors affecting option prices

- There are six factors affecting the price of a stock option
- 1. The current stock price, S₀
- 2. The strike price, X
- 3. The time to expiration, T
- 4. The volatility of the stock price, σ
- 5. The risk free interest rate, r
- 6. The dividends expected during the life of the option

Factors affecting option prices


Variable	European call	European put	American call	American put
S ₀	+	-	+	-
X	-	+	-	+
Т	?	?	+	+
σ	+	+	+	+
r	+	-	+	-
Dividends	-	+	-	+


University of Stavanger


Factors affecting option prices

- S₀, X
 - Value of an option at expiry: Call (long): max (S_T - X, 0) Put (long): max (X - S_T, 0)
- Time to expiration
 - The longer time to maturity, the more exercise opportunities

Q: Why is the impact of time to maturity larger for ATM options than OTM options A: We will revisit this when we look at option 'greeks'

Factors affecting option prices

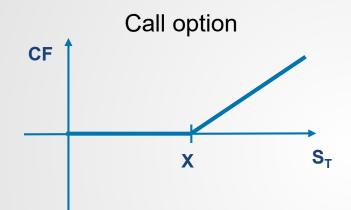
Volatility

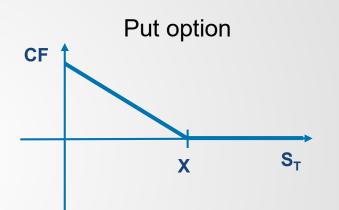
- As volatility increases, the probability of a stock doing very well or very bad increases
 - Options remove the downside risk
 - Options become more valuable with increasing volatility

Risk-free interest rate

not clearcut

Assumptions and notation

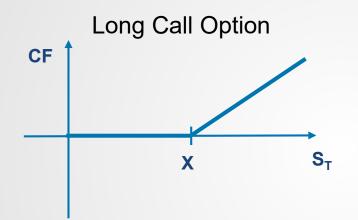

- Assumptions:
- 1. There are no transaction costs
- 2. All trading profits (net of trading losses) are subject to the same tax rate
- 3. Borrowing and lending are possible at the risk-free interest rate

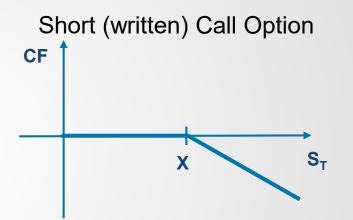


Option portfolios & strategies

Call or put?

A right, but not an obligation, to **buy** the underlying asset at price X at some time in the future

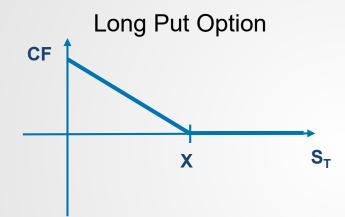

University of Stavanger

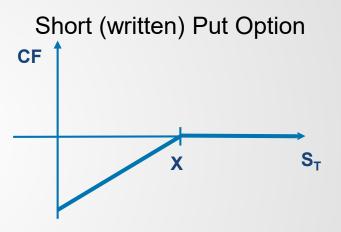

$$CF_T = max (S_T - X, 0)$$

A right, but not an obligation, to **sell** the underlying asset at price X at some time in the future

$$CF_T = max (X - S_T, 0)$$

Long or short?

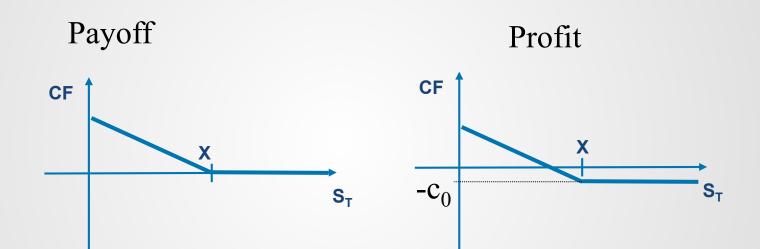



A right, but not an obligation, to **buy** the underlying asset at price X at some time in the future An obligation to **sell** the underlying asset to the long option holder when the option is exercised

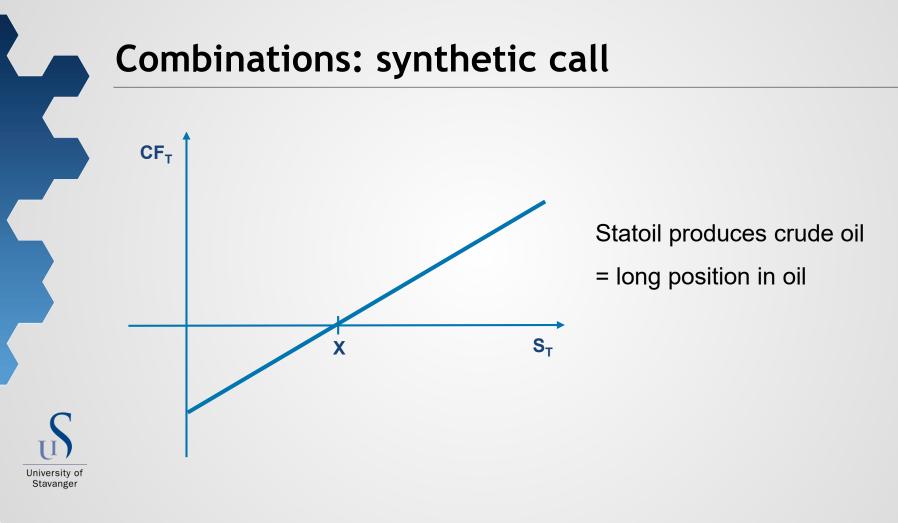
$$CF_T = -max (S_T - X, 0)$$

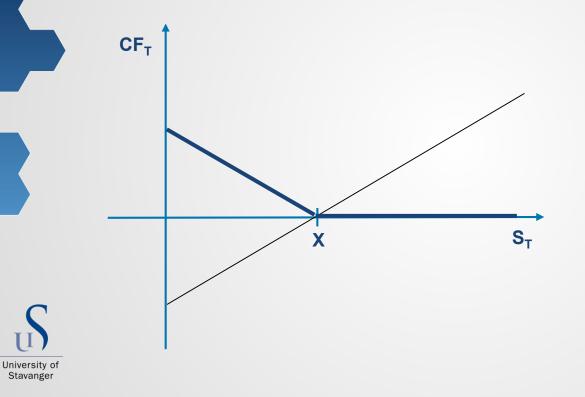
$$CF_T = max (S_T - X, 0)$$

Long or short?

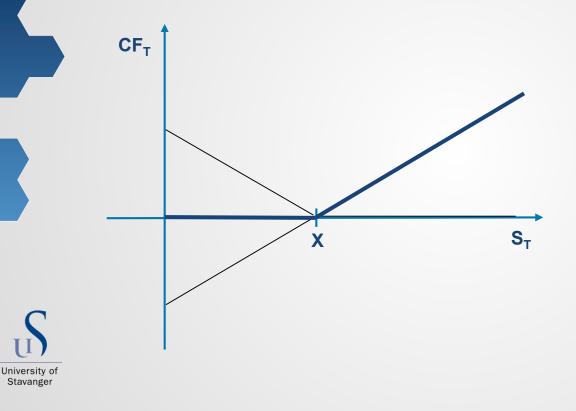

A right, but not an obligation, to **sell** the underlying asset at price X at some time in the future

An obligation to **buy** the underlying asset to the long option holder when the option is exercised


$$CF_{T} = - \max(X - S_{T}, 0)$$


$$CF_{T} = max (X - S_{T}, 0)$$

Payoff vs Profit diagrams



Statoil produces crude oil

= long position in oil

Decides to hedge the downside with a put option

Statoil produces crude oil

= long position in oil

Decides to hedge the downside with a long put option

The combination is a synthetic call option

Cash flows

- Strike price, X = 50
- Purchase price, S₀ = 50
- Sales price, S_T = 10, 20,....,100

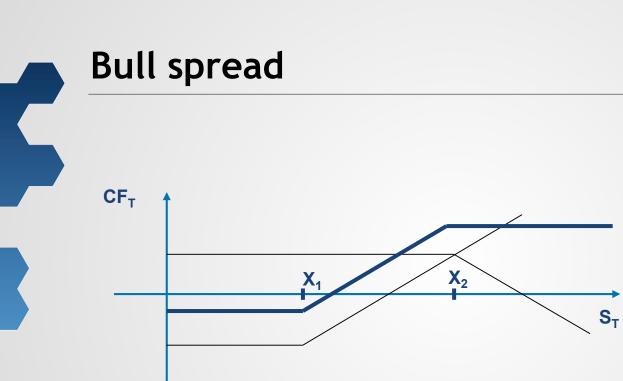
A. Stock purchase (long)

Spot price, St	10	20	30	40	50	60	70	80	90	100
Purchase price	-50	-50	-50	-50	-50	-50	-50	-50	-50	-50
Spot price	10	20	30	40	50	60	70	80	90	100
Profit	-40	-30	-20	-10	0	10	20	30	40	50

B. Put (long)

Spot price, St	10	20	30	40	50	60	70	80	90	100
Strike price	50	50	50	50	50	50	50	50	50	50
Spot price	10	20	30	40	50	60	70	80	90	100
Profit put	40	30	20	10	0	0	0	0	0	0

A + B (long stock + long put)

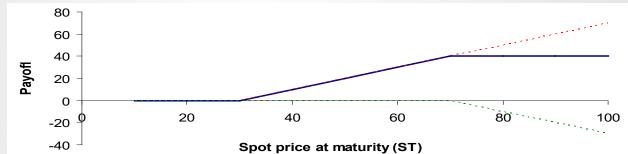

Spot price, St	10	20	30	40	50	60	70	80	90	100
Strike price	50	50	50	50	50	50	50	50	50	50
Spot price	10	20	30	40	50	60	70	80	90	100
Profit, stock	-40	-30	-20	-10	0	10	20	30	40	50
Profit, put	40	30	20	10	0	0	0	0	0	0
Profit portfolio	0	0	0	0	0	10	20	30	40	50

Compare this to a long call position

C. Call (long)

Spot price, St	10	20	30	40	50	60	70	80	90	100
Strike price	50	50	50	50	50	50	50	50	50	50
Spot price	10	20	30	40	50	60	70	80	90	100
Profit call	0	0	0	0	0	10	20	30	40	50

• The price of a call decreases with increasing strike. Net investment.


•Market view: believe that the price of the underlying will increase

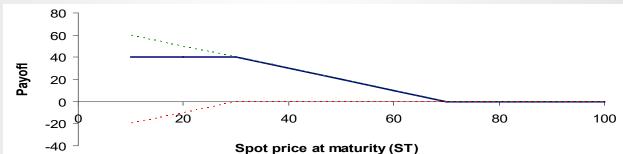
• Upside and downside is limited

• Cheaper portfolio than just hedging the downside


- Long call, X1 = 30
- Short call, X2 = 70
- Spot price = 10, 20,, 100

Spot price, St	10	20	30	40	50	60	70	80	90	100
Strike price, X1	30	30	30	30	30	30	30	30	30	30
Profit long call, X1	0	0	0	10	20	30	40	50	60	70
Strike price, X2	70	70	70	70	70	70	70	70	70	70
Profit short call, X2	0	0	0	0	0	0	0	-10	-20	-30
Profit portfolio	0	0	0	10	20	30	40	40	40	40

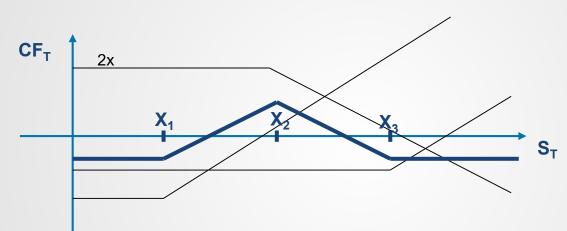
Bear spread


• The price of a put increases with decreasing strike price. Net initial payment

•Market view: believe the price of the underlying will dectrease

• Limited upside and downside

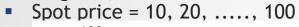
Short put with strike X_1 + Long put with strike X_2


- short put, X1 = 30
- long put, X2 = 70
- Spot price = 10, 20,, 100

Spot price, St	10	20	30	40	50	60	70	80	90	100
Strike price, X1	30	30	30	30	30	30	30	30	30	30
Profit short put, X1	-20	-10	0	0	0	0	0	0	0	0
Strike price, X2	70	70	70	70	70	70	70	70	70	70
Profit long put, X2	60	50	40	30	20	10	0	0	0	0
Profit portfolio	40	40	40	30	20	10	0	0	0	0

Butterfly spread

Option with 3 strikes
Profit if S_T is close to strike X₂

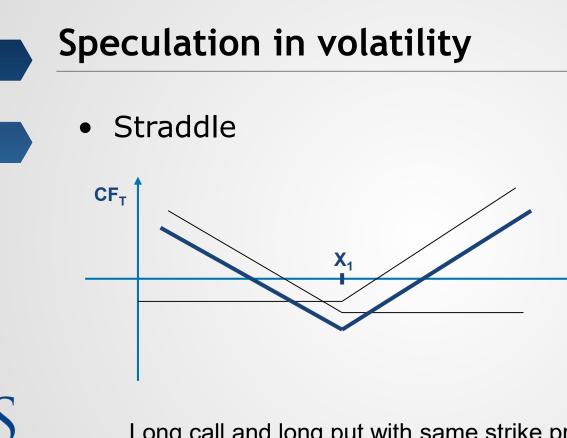

• A small loss when the prices of the underlying moves a lot


• Market view: Don't believe in large price movements

• A small initial investment

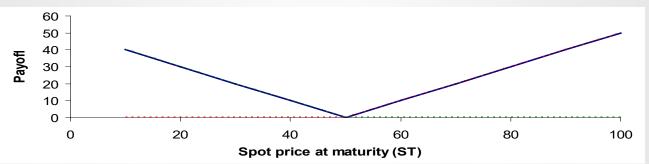
University of Stavanger Long call with strike $X_1 + (2x)$ short calls with strike X_2 + long call with strike X_3

- long call, X1 = 30
- $2 \times \text{short call}, X2 = 50$
- long call, X3 = 70

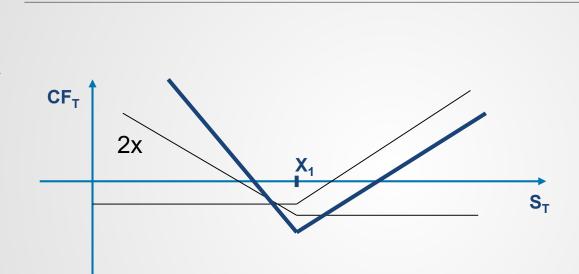


Spot price at maturity (ST)

Spot price, St	10	20	30	40	50	60	70	80	90	100
Strike price, X1	30	30	30	30	30	30	30	30	30	30
Profit long call, X1	0	0	0	10	20	30	40	50	60	70
Strike price, X2	50	50	50	50	50	50	50	50	50	50
2 x Profit short call, X2	0	0	0	0	0	-20	-40	-60	-80	-100
Strike price, X3	70	70	70	70	70	70	70	70	70	70
Profit long call, X3	0	0	0	0	0	0	0	10	20	30
Profit portfolio	0	0	0	10	20	10	0	0	0	0


 Market view: an investor expects a large price movement (high volatility), but does not know in which direction the price will move

S_T

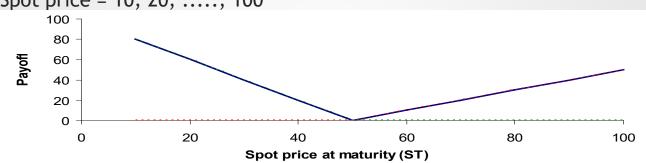

University of Stavanger

Long call and long put with same strike price

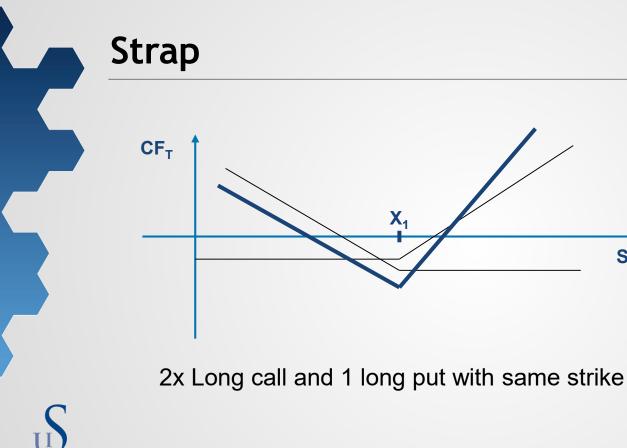
- long put, X1 = 50
- long call, X1 = 50
- Spot price = 10, 20,, 100

Spot price, St	10	20	30	40	50	60	70	80	90	100
Strike price, X1	50	50	50	50	50	50	50	50	50	50
Profit long call, X1	0	0	0	0	0	10	20	30	40	50
Profit long put, X1	40	30	20	10	0	0	0	0	0	0
Profit portfolio	40	30	20	10	0	10	20	30	40	50

Long call og 2x long put med samme strike


Market view: an investor expects a large price movement (high volatility), but does not know in which direction the price will move

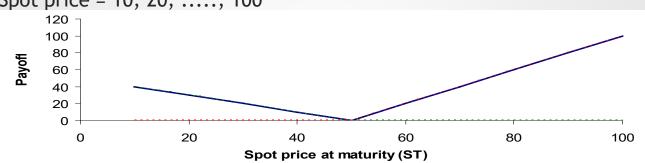
 However, believes that market is more likely to move down than up



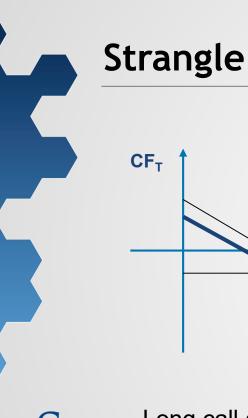
Strip

- 2x long put, X1 = 50
- long call, X1 = 50
- Spot price = 10, 20,, 100

Spot price, St	10	20	30	40	50	60	70	80	90	100
Strike price, X1	50	50	50	50	50	50	50	50	50	50
Profit long call, X1	0	0	0	0	0	10	20	30	40	50
2 x Profit long put, X1	80	60	40	20	0	0	0	0	0	0
Profit portfolio	80	60	40	20	0	10	20	30	40	50


Market view: an investor expects a large price movement (high volatility), but does not know in which direction the price will move

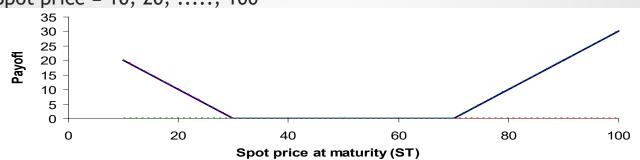
S_T


However, • believes that market is more likely to move up than down

- long put, X1 = 50
- 2x long call, X1 = 50
- Spot price = 10, 20,, 100

Spot price, St	10	20	30	40	50	60	70	80	90	100
Strike price, X1	50	50	50	50	50	50	50	50	50	50
2x Profit long call, X1	0	0	0	0	0	20	40	60	80	100
Profit long put, X1	40	30	20	10	0	0	0	0	0	0
Profit portfolio	40	30	20	10	0	20	40	60	80	100

University of Stavanger Long call and long put with different strike prices


 Market view: an investor expects a large price movement (high volatility), but does not know in which direction the price will move

S_T

 Believes that the price of the underlying will move more (even higher volatility) than with a straddle

- long put, X1 = 30
- 2x long call, X1 = 70

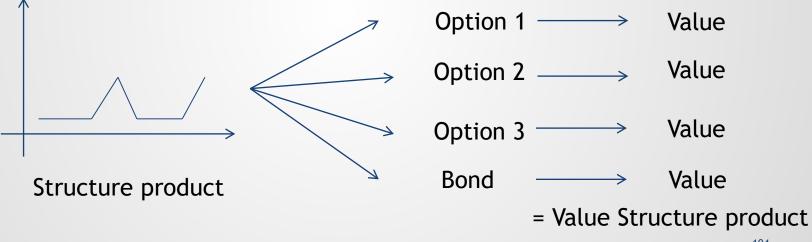
Spot price, St	10	20	30	40	50	60	70	80	90	100
Strike price, X1	30	30	30	30	30	30	30	30	30	30
Profit long put, X1	20	10	0	0	0	0	0	0	0	0
Strike price, X2	70	70	70	70	70	70	70	70	70	70
Profit long call, X2	0	0	0	0	0	0	0	10	20	30
Profit portfolio	20	10	0	0	0	0	0	10	20	30

Calender spread

- Calender spread
 - options that have the same strike price, but different maturities
 - Can be created by selling a call option with a certain strike price and buying a longer-maturity call options with the same strike price

Exercises

- Create a Bull spread using put options
- Create a Bear spread using call options


Why learn about option portfolios and strategies?

Gives insight into construction of option portfolios

University of

Stavanger

Can give insight into structured derivative products (including valuation)

Relevant literature

- Brooks, C., Prokopczuk, M. and Y. Wu (2013). Commodity futures prices: More evidence on forecast power, risk premia and the theory of storage. The Quarterly Review of Economics and Finance 53, 73-85.
- Brennan, M. (1958). The supply of storage. American Economic Review, 48(1), 50-72.
- Brennan, M., & Schwartz, E. (1985). Evaluating natural resource investments. Journal of Business, 58, 135-157.
- Fama, E., & French, K. (1987). Commodity futures prices: Some evidence on forecast power, premiums, and the theory of storage. Journal of Business, 60(1), 55-73.
- Pindyck, R. (2001). The dynamics of commodity spot and futures markets: A primer. Energy Journal, 22(3), 1-30.
- Asche, F., Misund, B. and A. Oglend (2018). The case and cause of salmon price volatility. Marine Resource Economics 34(1), 23-38.
- Misund, B. and R. Nygård (2018). Big Fish: Valuation of the world's largest salmon farming companies. Marine Resource Economics 33(3), 245-261.
- Misund, B. (2018). Volatilitet i laksemarkedet. Samfunnsøkonomen 2:41-54.
- Misund, B. (2018). Common and fundamental risk factors in shareholder returns of Norwegian salmon producing companies.
- Misund, B. (2018). Valuation of salmon farming companies. Aquaculture Economics & Management 22(1), 94-111.
- Misund, B. & A. Oglend (2016). Supply and demand determinants of natural gas price volatility in the U.K.: A vector autoregression approach. Energy 111, 178-189.
- Asche, F., Misund, B. & A. Oglend (2016). Determinants of the futures risk premium in Atlantic salmon markets. Journal of Commodity Markets, 2(1), 6-17.
- Misund, B. & F. Asche (2016). Hedging efficiency of Atlantic salmon futures. Aquaculture Economics & Management 20(4), 368-381.
- Asche, F., Misund, B. & A. Oglend (2016). The spot-forward relationship in Atlantic salmon markets. Aquaculture Economics & Management 20(2), 222-234.
- Asche, F., Misund, B. and A. Oglend (2016). Fish Pool Priser Hva Forteller de oss om fremtidige laksepriser? Norsk Fiskeoppdrett nr.8 2016, p.74-77.
- Symeonidis, L., Prokopczuk, M. Brooks, C. and E. Lazar (2012). Futures basis, inventory and commodity price volatility: An empirical analysis. Economic Modelling 29, 2651-2663.

