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Topics

 Modeling uncertain prices using stochastic differential
equations

 Measuring and estimating volatility
 Monte Carlo simulation

 Stocks
 Correlated stock prices
 Commodity prices (mean reverting)
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Learning objectives

 Know what stochastic differential equations are and why they 
are important in option pricing

 Know the difference between constant, deterministic and 
stochastic processes

 Understand the relationship between real-lif price behaviour 
and modelled price behaviour
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Learning objectives

 Know which stochastic differential equations are relevant for 
pricing derivatives on energy commodity prices
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Learning objectives: Volatility

 Know what implied volatility is
 Know what ‘volatility smiles’ are
 Know why the volatility smile is the same for calls and puts
 Explaining the shape of the volatility surface after 1987 

(understand the reasons for the smile and the skew)
 What we mean by the volatility term structure
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Learning objectives: volatility

 Know three methods for estimating volatility
 simple approach
 Exponentially weighted moving average (EWMA) model
 Generalised AutoRegressive Conditional Heteroscedasticity (GARCH) model
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Stochastic Differential Equations



What’s the point of SDE’s?

 To price options we need to be able to describe the behaviour 
(i.e. direction over time and uncertainty) of the prices of the 
underlying asset

 A mathematical representation of the price behaviour

 Key elements: direction and uncertainty
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What’s the point of SDE’s?
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𝑆𝑆𝑡𝑡 = 𝑓𝑓 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 𝑓𝑓(𝑢𝑢𝑢𝑢𝑢𝑢𝑡𝑡𝑢𝑢𝑡𝑡𝑢𝑢𝑡𝑡𝑢𝑢𝑡𝑡𝑢𝑢)

Direction 
(‘drift’)

Variation around 
the drift element (‘stochastic’)



Types
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𝑆𝑆𝑡𝑡 = 𝑓𝑓 𝑡𝑡 + 𝑓𝑓(𝜀𝜀)

∆𝑆𝑆𝑡𝑡= 𝑓𝑓 ∆𝑡𝑡 + 𝑓𝑓(∆𝜀𝜀)

𝑑𝑑𝑆𝑆𝑡𝑡 = 𝑓𝑓 𝑑𝑑𝑡𝑡 + 𝑓𝑓(𝑑𝑑𝜀𝜀)

Price level

Price change (returns): discrete

Price change (returns): continuous



Stochastic processes

 Definition:
 Constant variable
 Deterministic variable
 Stochastic variable

 A constant variable has the same value 
irrespective of time

 The value of a deterministic variable is a 
function of time

 The value of a stochastic variable changes over 
time in an uncertain way

𝑆𝑆𝑡𝑡 = 𝑢𝑢

𝑆𝑆𝑡𝑡 = 𝑓𝑓(𝑡𝑡)

𝑆𝑆𝑡𝑡 = 𝑓𝑓(𝑡𝑡, 𝜀𝜀)



Stochastic processes
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Stochastic processes
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constant

deterministic
St



Stochastic processes

t

constant

deterministic
stochastic

St



Discrete vs continuous

 2 classifications of stochastic processes
 Discrete time
 Continuous time

 Discrete time
 The value of a variable can change only at certain fixed points in time

 Continuous-time
 The value of a variable can change at any time

 We model the price of the underlying asset using a stochastic 
price process, either discrete or continuous



Discrete vs continuous

Discrete timesteps Continuous timesteps

t t

St St



Pricing options in continuous time

 Pricing options in discrete time
 binomial trees
 trinomial trees

 Pricing options in continuous time
 Black-Scholes (closed form (analytic) solution)
 Monte Carlo simulation



Pricing options in continuous time

 Stochastic price processes (modelling uncertainty)
 The Markov property
 Wiener process

 Continuous-time stochastic processes (when Δt ->0)
 Generalised Wiener
 Itô process
 Geometric brownian motion(GBM): the price process for stocks

Simple 
model

Realistic
model
for 
stocks



SDE for stocks
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𝑆𝑆𝑡𝑡 = 𝑓𝑓 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 𝑓𝑓(𝑢𝑢𝑢𝑢𝑢𝑢𝑡𝑡𝑢𝑢𝑡𝑡𝑢𝑢𝑡𝑡𝑢𝑢𝑡𝑡𝑢𝑢)We want our final  
model for stock 
prices to be on this 
form (e.g. capture 
both direction and 
uncertainty) How do we develop f(time)

and f(uncertainty)?

That is the topic over the next slides



The Markov property

 The Markov property is a particular type of stochastic process 
where only the present value of a variable is relevant for 
predicting the future
 the past history is irrelevant

 Fundamental valuation
 the probability distribution of a price at any point in time is not dependent on the 

particular path followed by the process in the past

 Stock prices are assumed to follow a Markov process
 consistent with the weak form of market efficiency



Stochastic time stochastic processes

 Consider a variable (e.g. a price or change in price) that follows a 
Markov stochastic process

 Suppose the current value is 10 and the change in its value during 
1 year is ф(0,1)

 ф(μ,σ) is a probability distribution with mean μ and standard 
deviation σ

 What is the probability distribution of the change in the value of 
the variable during 2 years?
 The sum of the distributions (since they are independent)



Stochastic time stochastic processes

 Mean
 1 year mean = u
 2 year mean = u + u = 2u
 2 year mean = 0 + 0 = 2x0 = 0

 Standard deviation (square root of variance)
 1 year standard deviation = s
 1 year variance = s2

 2 year variance = s2 + s2 = 2s2

 2 year standard deviation = √2s2 = √2x12 =√2

 2 year distribution: ф(0, √2)



Stochastic time stochastic processes

 2-year distribution: ф(0, 2)

 Generalisation: ф(0, ∆𝑡𝑡)

 The variance is additive, the standard deviation is not

 In terms of:

~ф(0, ∆𝑡𝑡)

𝑆𝑆𝑡𝑡 = 𝑓𝑓 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 𝑓𝑓(𝑢𝑢𝑢𝑢𝑢𝑢𝑡𝑡𝑢𝑢𝑡𝑡𝑢𝑢𝑡𝑡𝑢𝑢𝑡𝑡𝑢𝑢)

(Markov process)



Wiener process

 A Wiener process is a particular type of Markov process with a 
mean of 0 and a standard deviation of 1 (per year)
 Also referred to as Brownian Motion

 A variable W follows a Wiener process if it has the two 
following properties:

1. The change ΔW during a small period of time Δt is:

tW ∆=∆ ε )1,0(~ φε



Wiener process

2. The values of ΔW for any two different short intervals of time, 
Δt, are independent

 Mean of ΔW = 0

 Standard deviation of ΔW = ∆𝑡𝑡
 Variance of ΔW = Δt



Wiener process

 Short period of time, Δt:

 Longer period of time, T:

tW ∆=∆ ε
t

TN
∆

=

∑
=

∆=−
N

i
i tWTW

1
)0()( ε

Mean of [W(T)-W(0)] = 0
Standard deviation of [W(T)-W(0)] = 𝑇𝑇
Variance of [W(T)-W(0)] = n Δt = T



Wiener process
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𝑆𝑆𝑡𝑡 = 𝑓𝑓 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 𝑓𝑓(𝑢𝑢𝑢𝑢𝑢𝑢𝑡𝑡𝑢𝑢𝑡𝑡𝑢𝑢𝑡𝑡𝑢𝑢𝑡𝑡𝑢𝑢)

(Wiener process)tW ∆=∆ ε
)1,0(~ φε



ΔS (discrete change in price) and dS (continuous 
change in price)

 Small changes in time:

 In the limit (as Δt ->0)

tax ∆=∆

dtadx ⋅=



ΔW and dW

ΔW

dW



Generalized Wiener process

 Drift rate: the mean change per unit time for a stochastic 
process

 Variance rate: the variance per unit of time

 Wiener process
 Drift rate = 0
 Variance rate = 1



Generalized Wiener process

 A Generalised Wiener process for the variable S:

 This means that:

dWdtdS σµ += μ and σ are constants

drift term stochastic term

TTSST εσµ ++≈ 0



Generalised Wiener process
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𝑆𝑆𝑡𝑡 = 𝑓𝑓 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 𝑓𝑓(𝑢𝑢𝑢𝑢𝑢𝑢𝑡𝑡𝑢𝑢𝑡𝑡𝑢𝑢𝑡𝑡𝑢𝑢𝑡𝑡𝑢𝑢)

𝑑𝑑𝑆𝑆𝑡𝑡 = 𝑓𝑓 𝑑𝑑𝑡𝑡 + 𝑓𝑓(𝑑𝑑𝑑𝑑)

𝑑𝑑𝑆𝑆𝑡𝑡 = 𝑢𝑢𝑑𝑑𝑡𝑡 + 𝜎𝜎𝑑𝑑𝑑𝑑

Price process (level)

Price process (change/ 
price return)

Generalised Wiener 
(continous time)

TTSST εσµ ++≈ 0
Generalised Wiener 
(integrated over time T)



Generalized Wiener process

t

deterministic
stochastic

dWdtdS σµ +=
dtdS µ=

S

constant
cS =c



Itô process

 Generalised Wiener process:
 μ and σ are functions of only time

 Itô process:
 μ and σ are functions of both time and the underlying variable S

dWtdttdS )()( σµ +=

dWtSdttSdS ),(),( σµ +=



Stock price process

 Does a stock price follow a generalised Wiener process?

 Fails to capture key aspects of stock prices
 the expected return on a stock is independent of the stock’s price

 expected return: μ/S should be constant: (St-S0)/S0

 A more realistic stock price process is:

dWdt
S

dSSdWSdtdS σµσµ +=⇔+=



Geometric Brownian Motion (GBM)

 Stock price process

 μ = expected return on stock
 σ = volatility of stock

 This price process is called Geometric Brownian Motion (GBM)

dWdt
S

dS σµ +=



Geometric Brownian Motion (GBM)

 Stock price process (continuous time)

 Stock price process (discrete time)

dWdt
S

dS σµ +=

ttSS ∆+∆=∆ σεµ



Geometric Brownian Motion (GBM)

 Stock price process (continuous time)

 Stock price process (discrete time)

dWdt
S

dS σµ +=

tStSS ∆+∆=∆ εσµ

change in spot price drift time step magnitude
(‘size of 1 std’))

Uncertainty
(‘number of standard deviations’)



The principles of Monte Carlo simulation
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Monte Carlo simulation

 We can use the discrete version to simulate prices

 We need
 Expected return: μ
 Expected volatility: σ
 Random number generator to create ε

tStSS ∆+∆=∆ εσµ

)1,0(~ φε



Monte Carlo simulation

 Suppose 
 the current stock price is 20
 the expected return from a stock is 14% (per year)
 the volatility in returns is 20% (per year)
 time steps (Δt) are in 0.01 years

tStSS ∆+∆=∆ εσµ



Monte Carlo simulation

 Suppose 
 the current stock price is 20
 the expected return from a stock is 14% (per year)
 the volatility in returns is 20% (per year)
 time steps (Δt) are in 0.01 years

tStSS ∆+∆=∆ ε20.014.0



Monte Carlo simulation

 Suppose 
 the current stock price is 20
 the expected return from a stock is 14% (per year)
 the volatility in returns is 20% (per year)
 time steps (Δt) are in 0.01 years

40.001.00.12020.001.02014.01 =×××+××=∆S

• Simulation 1: If ε =1.0 (for 1 time step), then

• Simulation 2:If ε =-1.0 (for 1 time step), then
40.001.0)0.1(2020.001.02014.02 −=×−××+××=∆S



Monte Carlo simulation

 The current spot price is 20

 For price simulation number 1 the spot price in 1 time step is 
20 + 0.40 = 20.40

 For price simulation number 2 the spot price in 1 time step is 
20 - 0.40 = 19.60



Characteristics of energy/commodity
prices
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Characteristics of energy prices

 High volatility (crude oil, natural gas, power) 
 Jumps/spikes, regime switching
 Mean reversion
 Seasonality (price, volatility)
 Samuelson effect 
 Stochastic volatility, volatility smile, volatility surface

 Distribution (leptokurtosis, skewness)

 Why is knowledge about price behaviour important?



High volatility

Volatility is a measure of price fluctuations

NPB spot prices
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NPB spot prices
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Jumps / price spikes

Often measured as price change > 3σ



NPB spot prices

0

20

40

60

80

100

120

140

160

180

200

okt. 95 jul. 98 apr. 01 jan. 04 okt. 06 jul. 09

Pe
nc

e/t
he

rm

Regime switching

Regime 
switch?

Structural change of volatility, e.g. going from a 
regime of low volatility to a period of high volatility



Samuelson effect

 Falling term structure of volatility

t

σ

spot

Forwards/futures

Falling volatility of prices along the forward curve



Stochastic volatility

Volatility changes over time in an uncertain way

NPB spot price volatility
(20 day rolling)
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Distribution of log returns

 Normal distribution ?
 Skewness (negative), 

kurtosis (leptokurtic)
 Including fat tails in the 

calibration will overestimate the 
standard deviation (volatility)

 Excluding fat tails will 
underestimate the true 
variability in prices

 Volatility including fat tails: 176%
 Volatility excluding fat tails: 

149%
0

100

200

300

400

500

600

-1.4 -1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

”fat tails”

Distribution of daily log returns (NBP)

Skewness: -0.165

Kurtosis: 6.384



Modeling commodity prices
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Price modeling

 Issues

1. Price forecasting vs risk modeling
2. Fundamental model vs Reduced form
3. Risk neutral prices?
4. Spot or spot-forward models
5. Simple models or advanced models
6. What is the underlying asset? 
7. Calibration of parameters



Spot price model: GBM
 Geometric Brownian Motion

 Downside: does not capture important characteristics of energy 
prices (especially mean reversion)

tttt dWSdtSdS σµ +=

t

St



Spot price model: mean reversion

 Mean reversion

stochasticdriftdSt +=

t

St

Adjustment of drift term



Spot price model: Schwartz

 Mean reversion model
 Vasicek: Ornstein-Uhlenbeck

 The most used price process is the Schwartz model (1997)

( ) tt
t

t dWdtSk
S

dS σθ +−= ln

Long-term 
mean

mean 
reversion rate



Spot price model: Schwartz

 Schwartz model (1997)

 Let x = ln(S). Converting to returns (changes) (and using Ito’s 
Lemma) the model becomes:

( ) tt
t

t dWdtSk
S

dS σθ +−= ln

t
ktkt

t dWedte
k

kdx σσθ +







−=

2

2



Modeling of other characteristics

 Jumps (jump-diffusion)
 Regime switching (jump-diffusion with regime switch)
 Stochastic volatility
 Seasonality



Jumps & seasons

 Jumps

 Seasonality

ttt
t

t dQdWdttSk
S

dS κσθ ++−= ))(ln(

Price jump 
parameter

ttt dWdtXdX σβα +−= )(

tt XtfS += )(ln

f(t):  sinus, cosinus



Forward curve modeling

 The most common approach to forward curve modeling is:

 Modelling forward curves can be done using Principle 
Component Analysis (PCA)

∑=
j

j
tj dWTt

TtF
TtdF ),(
),(
),( σ

volatilities are a 
function of time



Numerical methods



The Bigger picture
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dWdt
S

dS σµ +=

tStSS ∆+∆=∆ εσµ

discretization

Volatility surface
Volatility is often assumed 
to be constant. This 
chapter describes how this 
is not the case

Volatility estimation
This chapter describes 
methods for calculating the  
volatility of the underlying 
asset

Monte Carlo 
simulation
Using this 
equation to 
create 
random 
price paths



Numerical methods

 Numerical procedures are used when analytic results such as 
the Black-Scholes-Merton formulas do not exist

 Alternative 1: Trees
 Binomial trees
 Trinomial trees

 Alternative 2: Monte Carlo simulation
 Stock price process
 Energy price process (simple)
 Calibration of parameters



Numerical methods

 Black-Scholes is an exact formula (analytic solution)
 When exact formulas are not available, numerical procedures 

can be used
 Monte Carlo simulation are used for valuing derivatives where 

the payoff is dependent on the history of the underlying 
variable (asian option), or where there are several underlying 
variables (spread options)

 Trees are usually used for American options and other 
derivatives where the holder has early exercise rights prior to 
maturity



Binomial trees

 Building binomial trees
 Working backwards through the tree
 Expressing the approach algebraically
 Estimating Delta and other greeks
 Using the binomial tree for options on indices, currencies and 

futures contracts
 With and without dividends



Control variate technique

 A technique called the control variate technique can improve 
the accuracy of the pricing of an American option

 Use the same tree to calculate both the value of the American 
option and (fA) and the value of the corresponding European 
option (fE)

 Also calculate the Black-Scholes value (fB-S)
 The error given by the tree when valuing the European option 

is assued equal to that given by the tree when valuing the 
American option



Control variate technique

 The estimate of the price of the American option is then
(fA)+(fB-S)-(fE)



Trinomial trees: Alternative procedure for 
constructing trees

69

teu ∆= 3σ
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qm

qd
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u
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Trinomial trees
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qu
qm
qd

Δt

• Calculations analogous to 
binomial tree
• Work from end of the tree to 
the beginning
• At each node we calculate 
the value of exercising and 
value of continuing
• The value of continuing is

)( ddmmuu
tr cqcqcqe ++∆−



Monte Carlo simulation

 The Monte Carlo simulation method creates sample paths to 
obtain the expected payoff in a risk-neutral world and then 
discount this payoff at the risk-free rate
1. Sample a random path for S in a risk-neutral world
2. Calculate the payoff from the derivative
3. Repeat 1. and 2. to get many sample values of the payoff from 

the derivative in a risk-neutral world
4. Calculate the mean (average) of the sample payoffs to get an 

estimate of the expected payoff in a risk-neutral world
5. Discount the expected payoff at the risk-free rate to get an 

estimate of the value of the derivative



Monte Carlo simulation

 First of all we need a price process we can use. In order to do 
that we need to complete 2 steps first:

 1. We need to convert a ‘risky’ continuous time price into a 
risk neutral price process

 This enables discounting using the risk free rate

 2. We need to ‘discretize’ the price process, i.e. convert the 
continuous time model into a discrete time model. Monte 
Carlo simulation is carried out in discrete time 

72



1. Risk neutral price process

73

 The process followed by a stock in a risky world is:

(GBM)

 The process followed by a stock in a risk-neutral world is

SdWSdtdS σµ +=

WSdrSdtdS ˆσ+=



2. Discretization

WSdrSdtdS ˆσ+=

 Continuous time

 Discrete time
 To simulate the path followed by S, we divide the life of the 

derivative into N short intervals of length dt

ttSttrStSttS ∆+∆=−∆+ εσ )()()()(

ΔS



Logreturns








 ∆+
=−∆+

)(
)(ln)(ln)(ln

tS
ttStSttS

 In practice, it is more accurate to simulate ln S, rather than S

This is the logarithmic return on S



Price process for logreturns
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WddtrSd ˆ)
2
1(ln 2 σσ +−=

WSdrSdtdS ˆσ+=

Risk neutral stochastic process for price level

Risk neutral stochastic process for price return



Discrete stochastic process for logreturns

WddtrSd ˆ)
2
1(ln 2 σσ +−=

 Continuous time

 Discrete time
 To simulate the path followed by S, we divide the life of the 

derivative into N short intervals of length Δt

ttrtSttS ∆+∆−=−∆+ σεσ )
2
1()(ln)(ln 2

ttr
etSttS

∆+∆−
=∆+

σεσ )
2
1( 2

)()(



Monte Carlo simulation
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Monte Carlo simulation
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eSSttS
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random 
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This creates 1 price path. Repeat process to create many price paths
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Obtaining ε’s:Random draws
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To create the stochastic process we need to draw 1) random numbers and
2) draw from a specific distribution

1. Random draws
In Excel: RAND(): draws random numbers between 0 and 1

2. We need log returns to be normally distributed between –∞ and + ∞, 
and with mean 0 and standard deviation 1 (i.e. a standard normal 
distributed variable)
In Excel: NORM.S.INV() [Excel: NORMSINV]

Combined, we get NORM.S.INV(RAND()), and this can be used to find ε
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Monte Carlo simulation 100 paths
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Monte Carlo simulation

 The Monte Carlo simulation method creates sample paths to 
obtain the expected payoff in a risk-neutral world and then 
discount this payoff at the risk-free rate
1. Sample a random path for S in a risk-neutral world
2. Calculate the payoff from the derivative
3. Repeat 1. and 2. to get many sample values of the payoff from the derivative in a 

risk-neutral world
4. Calculate the mean (average) of the sample payoffs to get an estimate of the 

expected payoff in a risk-neutral world
5. Discount the expected payoff at the risk-free rate to get an estimate of the value 

of the derivative



Step 1. Sample price paths
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Step 2. Calculate payoff from derivative
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Payoff at time T:
max (ST - X,0)
max (102.89-X,0)



Step 3. Repeat steps 1. and 2.
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Step 4. Calculate the average payoff
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Step 5. Discount average payoff to today
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Simulating mean-reverting prices

 Mean reversion model
 Vasicek: Ornstein-Uhlenbeck

 The most used price process is the Schwartz model (1997)
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Simulating correlated prices

2
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 When simulating 2 or more correlated prices (Price 1 and Price 
2), a correlation coefficient must be used

 The first step is to generate 2 random variables

ε1 = N~(0,1)
ε2 = N~(0,1)

 Then for simulating Asset 1: use ε1

 And for simulating Asset 2: use ε3 (from ε1 and ε2)



Simulating correlated prices
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Simulating correlated prices
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Simulating correlated prices
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Which process? 

 Check behaviour of underlying prices
 Choose appropriate mathematical price process
 Discretise price process
 Calibrate input parameters (value drivers)

SdWSdtdS σµ +=

Volatility calibration



Volatility & volatility estimation
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Calibration of parameters

 Volatility estimation (needed for all option pricing)
 Simple weighted
 EWMA
 ARCH
 GARCH

 Correlation (needed to price spread options)

 Mean reversion rate (needed to price options on energy assets)
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Volatility

 Volatility is not observable (not like e.g. stock prices)
 Volatility has to be estimated
 Numerous methods for estimating volatility

 Implied volatility
 Forecasts based on historical volatility

 Simple approach
 Rolling window
 Exponential moving average (EWMA)
 Generalised Autorregressive Conditional Heteroscedasticty (GARCH)
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Estimating volatility using option prices: 
Implied volatility

 Implied volatility: Volatilities implied by option prices 
observed in the market

 Model-implied: estimated using an analytic formula, e.g. 
Black-Scholes

 Model-free implied: estimated from option prices without 
using a specific pricing model (e.g. The VIX index (aka ‘The 
fear index’))
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Estimating volatility using historical prices: 
Simple historical estimation

∑
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 1. Get historical prices (close prices, last): P1, P2, ......Pn
 2. The continuously compounded return (log returns) from 

yesterday (day i-1) to today (day i) is
ui = ln((Si)/Si-1)

 3. Calculate the daily variance rate of log returns using the 
most recent observations of ui



Estimating volatility using historical prices: 
Simple historical estimation

 4. Often a simplified version is used

 5. Annualise to get yearly volatility

100

hdailyannual
22 σσ =

- h are the number of time periods per 
year 
- If daily observations are used, h=252
- If weekly observations are used, h=52
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Volatility: Rolling window

 Often rolling windows are used
 A 20-day rolling volatility is calculated using the formula on 

the previous slide, using a 20 day estimation window
 20 working days ~ 1 month

 Other rolling windows can be used
 Short window: volatility changes quickly and more eratic
 Long-window: volatility changes slowly
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Weighting schemes

 The simple approach weights each observation equally
 However, since we want to estimate current volatility, it makes 

sense to give recent observations more weight
 We should therefore use a weighting scheme
 A model that does this is
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Exponentially Weighted Moving Average 
(EWMA)

 If we let the weights decrease exponentially as we move back 
in time, we get the EWMA model
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 If yesterday’s crude oil volatility was 1% (daily volatility), the 
return on crude oil prices was 2%, what is today’s volatility?
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Autoregressive Conditional 
Heteroscedasticity (ARCH) model
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If we include a long run average volatility, VL, we arrive at the ARCH 
model
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Generalised AutoRegressive Conditional 
Heteroscedasticity (GARCH)

 The equation for GARCH (q,p) is

 Using 1 lag, GARCH (1,1) is
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GARCH and EWMA

 If γ=0, α=1-λ, and β=λ, the GARCH (1,1) model is reduced to 
EWMA
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Generalised AutoRegressive Conditional 
Heteroscedasticity (GARCH)

 By setting ω= γVL

 This is the model that we will try to estimate
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Expanding GARCH (1,1)
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Expanding GARCH (1,1)
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Estimating GARCH

 1. In Excel

 2. Statistical software
 R, Stata, Matlab, Python, etc..
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GARCH: Hull approach
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In order to calculate today’s volatility using a GARCH (1,1) 
model, we need to estimate the parameters: ω,α, and β.

We use the Maximum Likelihood approach to estimate the 
parameters

Basic principle: The aim of maximum likelihood estimation is to 
find the parameter values that makes the observed data most 
likely
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Maximum Likelihood: Basic principle

 Suppose we have a random sample of size 2 (y1 and y2) from a 
N(μ,1) distribution

 We know that the sample is drawn from a normal distribution 
with standard deviation 1, but we do not know the mean (μ)

 Our task is to estimate the mean
 As soon as we choose a value for μ, we know the complete 

probability density of the data, and we can calculate the 
probability of observing our sample data given that choice

 This is the sample likelihood
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Maximum Likelihood: Basic principle

 Suppose we plug in a guess for μ, and calculate the sample 
likelihood (using a probability density function)

 Suppose it turns out that the value for the sample likelihood is 
very low

 We can conclude that our initial guess was wrong, inconsistent 
with the data, and we repeat with a another guess for μ

 We repeat until we arrive at the highest value for the sample 
likelihood (i.e. maximise the likelihood function)
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GARCH Maximum likelihood

 In terms of GARCH (1,1), we want to find the estimates for α, β, 
and ω which gives us the highest value for the likelihood function

 It can be shown that the likelihood function for GARCH (1,1) is

 The principle is that we calculate the log likelihood function 
repeatedly using different values for α, β, and ω

 We are looking for the combination of parameters that gives us 
the highest value for the log likelihood function
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GARCH estimation in R

 Many packages
 One useful packages is fGarch

 1. Estimate GARCH (1,1)
 garch1=garchFit(~garch(1,1),data=“logreturn data”, trace=F, include.mean=F)

 2. Pull out parameters
 summary(garch1)

 3. Pull out σn
2

 cat(garch1@sigma.t,sep="\n")
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Correlation
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 The correlation coefficient between two variables X and Y can be 
defined as

 Let x and y be returns on X and Y

 The covariance between x and y is calculated as

 where
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Mean reversion estimation
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We want to estimate this parameter (i.e. tells 
us how quickly prices return to the long run 
price level



Calibration: Mean reversion rate

 An approach to estimating the mean reversion rate is to 
regress delta S on lagged lnS (t) (lnSt-1)

 If S(t) is high, then the change in price in the next time period 
should be negative

 If S(t) is low, then the change in price in the next time period 
should be positive

St-St-1

lnSt-1

Slope of regression line is 
the estimate of the mean 
reversion rate



Calibration: Mean reversion rate

1−−=∆ tt SSS

 Estimate the following regression model

 The coefficient on St-1, β, will be the estimate of the mean 
reversion rate (daily)

 The coefficient will be negative (<0)
 It can be converted to annual mean reversion rate by 

multiplying with 250 days

εβα ++=∆ −1ln tt SS
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